【題目】閱讀下面的學(xué)習(xí)材料(研學(xué)問(wèn)題),嘗試解決問(wèn)題:

(a)某學(xué)習(xí)小組在學(xué)習(xí)時(shí)遇到如下問(wèn)題:如圖①,在RtABC中,∠C90°D為邊BC上一點(diǎn),DADB,EAD延長(zhǎng)線上一點(diǎn),∠AEB120°,猜想BC、EA、EB的數(shù)量關(guān)系,并證明結(jié)論.大家經(jīng)探究發(fā)現(xiàn):過(guò)點(diǎn)BBFAEAE的延長(zhǎng)線于F,如圖②所示,構(gòu)造全等三角形使問(wèn)題容易求解,請(qǐng)寫出解答過(guò)程.

(b)參考上述思考問(wèn)題的方法,解答下列問(wèn)題:

如圖③,等腰△ABC中,ABAC,HAC上一點(diǎn),在BC的延長(zhǎng)線上順次取點(diǎn)E、F,在CB的延長(zhǎng)線上取點(diǎn)BD,使EFDB,過(guò)點(diǎn)EEGACDH的延長(zhǎng)線于點(diǎn)G,連接AF,若∠HDF+F=∠BAC

(1)探究∠BAF與∠CHG的數(shù)量關(guān)系;

(2)請(qǐng)?jiān)趫D中找出一條和線段AF相等的線段,并證明你的結(jié)論.

【答案】(a)BCAE+BE.證明見解析;(b)(1)CHG=∠BAF;(2)AFDG,證明見解析.

【解析】

a)如圖②中,結(jié)論:BCAE+BE.理由如下,只要證明△BAF≌△ABC,推出BCAF,再證明EFBE,可得BCAFAE+EFAE+BE

b)(1)由∠F+FDG=∠BAC,推出∠CHG=∠FDG+DCH=∠FDG+F+CAF=∠BAC+CAF=∠BAF;

2)結(jié)論:AFDG.如圖③中,延長(zhǎng)BDR,使得BRCF,連接AR,作AJCFEG的延長(zhǎng)線于J.首先證明四邊形ACEJ,四邊形AJDR是平行四邊形,再證明△ABF≌△JED,想辦法證明∠1=∠2,即可解決問(wèn)題.

解:(a)如圖②中,結(jié)論:BCAE+BE.理由如下,

DADB

∴∠DBA=∠DAB,

AFBF,

∴∠F=∠C90°,

在△BAF和△ABC中, ,

∴△BAF≌△ABC(AAS)

BCAF,

∵∠AEB120°=∠F+FBE

∴∠FBE30°,

EFBE,

BCAFAE+EFAE+BE

BCAE+BE;

(b)(1)如圖③中,

∵∠HDF+F=∠BAC

∴∠CHG=∠FDG+DCH=∠FDG+F+CAF=∠BAC+CAF=∠BAF,

∴∠CHG=∠BAF

(2)結(jié)論:AFDG.理由如下,

如圖③中,延長(zhǎng)BDR,使得BRCF,連接AR,作AJCFEG的延長(zhǎng)線于J,

AJCE,ACJE,

∴四邊形ACEJ是平行四邊形,

AJCEACJE,

ABCA,

JEAB

ABAC,

∴∠ABC=∠ACB

∴∠ABR=∠ACF,

在△ABR和△ACF中, ,

∴△ABR≌△ACF(SAS),

ARAF

BRCF,BDEF,

DRCEAJEDBF,

AJRD,

∴四邊形ARDJ是平行四邊形,

JDARAF,

在△ABF和△JED中, ,

∴△ABF≌△JED(SSS),

∴∠1=∠BAF,

∵∠BAF=∠CHG=∠2,

∴∠1=∠2,

DGDJ,

AFDG

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果方程x2+px+q0的兩個(gè)根是x1x2,那么x1+x2=﹣p,x1x2q,請(qǐng)根據(jù)以上結(jié)論,解決下列問(wèn)題:

(1)p=﹣4,q3,求方程x2+px+q0的兩根.

(2)已知實(shí)數(shù)a、b滿足a215a50,b215b50,求+的值;

(3)已知關(guān)于x的方程x2+mx+n0,(n≠0),求出一個(gè)一元二次方程,使它的兩個(gè)根分別是已知方程兩根的倒數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算: + ﹣|2sin45°﹣1|.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB=4,AD=12,將矩形紙片折疊,使點(diǎn)C落在AD邊上的點(diǎn)M處,折痕為PE,此時(shí)PD=3.

(1)求MP的值;
(2)在AB邊上有一個(gè)動(dòng)點(diǎn)F,且不與點(diǎn)A,B重合.當(dāng)AF等于多少時(shí),△MEF的周長(zhǎng)最小?
(3)若點(diǎn)G,Q是AB邊上的兩個(gè)動(dòng)點(diǎn),且不與點(diǎn)A,B重合,GQ=2.當(dāng)四邊形MEQG的周長(zhǎng)最小時(shí),求最小周長(zhǎng)值.(計(jì)算結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在扇形AOB中∠AOB=90°,正方形CDEF的頂點(diǎn)C是 的中點(diǎn),點(diǎn)D在OB上,點(diǎn)E在OB的延長(zhǎng)線上,當(dāng)正方形CDEF的邊長(zhǎng)為2 時(shí),則陰影部分的面積為( )

A.2π﹣4
B.4π﹣8
C.2π﹣8
D.4π﹣4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)軸上的動(dòng)點(diǎn),點(diǎn)軸上方的動(dòng)點(diǎn),連接,,

1)如圖1,當(dāng)點(diǎn)軸上,且滿足的角平分線與的角平分線交于點(diǎn),請(qǐng)直接寫出的度數(shù);

2)如圖2,當(dāng)點(diǎn)軸上,的角平分線與的角平分線交于點(diǎn),點(diǎn)的延長(zhǎng)線上,且滿足,求;

3)如圖3,當(dāng)點(diǎn)在第一象限內(nèi),點(diǎn)內(nèi)一點(diǎn),點(diǎn)分別是線段,上一點(diǎn),滿足:,

以下結(jié)論:①;②平分;③平分;④

正確的是:________.(請(qǐng)?zhí)顚懻_結(jié)論序號(hào),并選擇一個(gè)正確的結(jié)論證明,簡(jiǎn)寫證明過(guò)程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,∠ABC=60°,AB=2,點(diǎn)P是這個(gè)菱形內(nèi)部或邊上的一點(diǎn),若以點(diǎn)P,B,C為頂點(diǎn)的三角形是等腰三角形,則P,D(P,D兩點(diǎn)不重合)兩點(diǎn)間的最短距離為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線經(jīng)過(guò)點(diǎn),

1求直線的解析式;

2若直線與直線相交于點(diǎn)求點(diǎn)的坐標(biāo);

3根據(jù)圖象,直接寫出關(guān)于的不等式的解集

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中;長(zhǎng)方形ABCD的四個(gè)頂點(diǎn)分別為;,.對(duì)該長(zhǎng)方形及其內(nèi)部的每一個(gè)點(diǎn)都進(jìn)行如下操作:把每個(gè)點(diǎn)的橫坐標(biāo)都乘以同一個(gè)實(shí)數(shù),縱坐標(biāo)都乘以3,再將得到的點(diǎn)向右平移個(gè)單位,向下平移個(gè)單位,得到長(zhǎng)方形及其內(nèi)部的點(diǎn),其中點(diǎn),,的對(duì)應(yīng)點(diǎn)分別為A’B’,C’D’,

1)點(diǎn)A’的橫坐標(biāo)為______(用含,的式子表示)

2)若點(diǎn)A’的坐標(biāo)為,點(diǎn)C’的坐標(biāo)為,求,的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案