【題目】下列運(yùn)算正確的是( 。
A.a﹣2a=a
B.(﹣2a2)3=﹣8a6
C.a6+a3=a2
D.(a+b)2=a2+b2
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,點(diǎn)E在邊AB上,EF⊥AC于F.
(1)尺規(guī)作圖:過點(diǎn)A作AD⊥BC于點(diǎn)D(保留作圖痕跡,不寫作法);(2)求證:∠CAD=∠AEF;(3)若∠ABC=45°,AD與EF交于點(diǎn)G,求證:EG=2AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】程大位所著《算法統(tǒng)宗》是一部中國傳統(tǒng)數(shù)學(xué)重要的著作.在《算法統(tǒng)宗》中記載:“平地秋千未起,踏板離地一尺.送行二步與人齊,五尺人高曾記.仕女佳人爭蹴,終朝笑語歡嬉.良工高士素好奇,算出索長有幾?”【注釋】1步=5尺.
譯文:“當(dāng)秋千靜止時,秋千上的踏板離地有1尺高,如將秋千的踏板往前推動兩步(10尺)時,踏板就和人一樣高,已知這個人身高是5尺.美麗的姑娘和才子們,每天都來爭蕩秋千,歡聲笑語終日不斷.好奇的能工巧匠,能算出這秋千的繩索長是多少嗎?”
如圖,假設(shè)秋千的繩索長始終保持直線狀態(tài),OA是秋千的靜止?fàn)顟B(tài),A是踏板,CD是地面,點(diǎn)B是推動兩步后踏板的位置,弧AB是踏板移動的軌跡.已知AC=1尺,CD=EB=10尺,人的身高BD=5尺.設(shè)繩索長OA=OB=x尺,則可列方程為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一條直線分別與直線BE、直線CE、直線CF、直線BF相交于點(diǎn)A,G,D,H且∠1=∠2,∠B=∠C
(1)找出圖中相互平行的線,說說它們之間為什么是平行的;
(2)證明:∠A=∠D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中每個小正方形邊長都是1.
(1)畫出△ABC關(guān)于直線1對稱的圖形△A1BlCl;
(2)在直線l上找一點(diǎn)P,使PB=PC;(要求在直線1上標(biāo)出點(diǎn)P的位置)
(3)連接PA、PC,計算四邊形PABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】搬進(jìn)新居后,小杰自己動手用彩塑紙做了一個如圖所示的正方形的掛式小飾品ABCD,彩線BD.AN.CM將正方形ABCD分成六部分,其中M是AB的中點(diǎn),N是BC的中點(diǎn),AN與CM交于O點(diǎn).已知正方形ABCD的面積為576cm2,則被分隔開的△CON的面積為( )
A. 96cm2 B. 48cm2 C. 24cm2 D. 以上都不對
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com