【題目】如圖,AB是⊙O的直徑,點D在⊙O上,∠BAD的平分線交⊙O于點C,過點C作CE⊥AD于點E,過點E作EH⊥AB于點H,交AC于點G,交⊙O于點F、M,連接BC.
(1)求證:EC是⊙O的切線;
(2)若AG=GC,試判斷AG與GH的數(shù)量關系,并說明理由;
(3)在(2)的條件下,若⊙O的半徑為4,求FM的長.
【答案】(1)見解析;(2)AG=2GH,理由見解析;(3)2.
【解析】
(1)連接OC,求出OC∥AE,求出EC⊥OC,根據切線的判定得出即可;
(2)求出△EGC是等邊三角形,求出∠EGC=60°,求出∠OAC=30°,即可得出答案;
(3)連接OF,根據垂徑定理求出FM=2FH,根據勾股定理求出AH,求出OH,根據勾股定理求出FH,即可得出答案.
(1)證明:連接OC,
∵OA=OC,
∴∠ACO=∠OAC,
∵AC平分∠DAB,
∴∠OAC=∠DAC,
∴∠DAC=∠OCA,
∴OC∥AE,
∵CE⊥AE,
∴CE⊥OC,
∵OC過O,
∴EC是⊙O的切線;
(2)解:AG=2GH,
理由是:∵CE是⊙O切線,
∴∠OCE=90°,
∴∠OCA+∠ECA=90°,
∵EM⊥AB,
∴∠EHA=∠EHO=90°,
∴∠OAC+∠AGH=90°,
∵∠OAC=∠OCA,
∴∠AGH=∠ECA,
∵∠EGC=∠AGH,
∴∠EGC=∠ECG,
∴EC=EG,
∵∠AEC=90°,AG=GC=AC,
∴EG=AC,
∴EC=AC,
∴EG=EC=CG,
∴△EGC是等邊三角形,
∴∠EGC=60°,
∴∠AGH=∠EGC=60°,
∴∠OAC=30°,
∵∠GHA=90°,
∴AG=2GH;
(3)解:連接OF,
∵AB是直徑,
∴∠ACB=90°,AB=2OA=2×4=8,
∵∠OAC=30°,
∴BC=AB=4,
在Rt△ACB中,AC= ==4 ,
∵AG=AC,
∴AG=2,
∵AG=2GH,
∴GH=,
在Rt△AGH中,AH= = =3,
∴OH=OA﹣AH=4﹣3=1,
在Rt△FHO中,F(xiàn)H== = ,
由垂徑定理得:PM=2FH=2.
科目:初中數(shù)學 來源: 題型:
【題目】人寫字時眼睛和筆端的距離超過30cm時則符合保護視力的要求.圖1是一位同學的坐姿,把她的眼睛B、肘關節(jié)C和筆端A的位置關系抽象成圖2的△ABC,BC=30cm,AC=22cm,∠ACB=530,她的這種坐姿符合保護視力的要求嗎?請說明理由.(參考數(shù)據:sin530≈0.8,cos530≈0.6,tan530≈1.3)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知Rt △ABC中,AC=BC,∠C=90°,D為AB邊的中點,∠EDF=90°,∠EDF繞D點旋轉,它的兩邊分別交AC、CB的延長線于E、F.下面結論一定成立的是______.(填序號)
①CD=AB;②DE=DF;③S△DEF=2S△CEF;④S△DEF-S△CEF=S△ABC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c 的圖象與 x 軸交于 B、C 兩點,交 y 軸于點 A.
(1)根據圖象請用“>”、“<”或“=”填空:a 0,b 0,c 0;
(2)如果 OC=OA= OB,BC=3,求這個二次函數(shù)的解析式;
(3) 在(2)中拋物線的對稱軸上,存在點 Q 使得△OQA 的周長最短,試求出點 Q 的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲乙兩商店出售同樣的茶壺和茶杯,茶壺每只定價20元,茶杯每只定價5元,兩家商店搞促銷活動,甲店:買一只茶壺贈一只茶杯;乙店:按定價的9折優(yōu)惠,某顧客需購買茶壺4只,茶杯若干只(不少于4只).
(1)設購買茶杯數(shù)為(只),在甲店購買的付款為(元),在乙店購買的付款數(shù)為(元),分別寫出在兩家商店購物的付款數(shù)與茶杯數(shù)之間的關系式;
(2)當購買多少只茶杯時,兩家商店的花費相同?
(3)當購買20只茶杯時,去哪家商店購物比較合算?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】服裝店購進一批秋衣,價格為每件30元.物價部門規(guī)定其銷售單價不高于每件70元,經市場調查發(fā)現(xiàn):日銷售量y(件)是銷售單價x(元)的一次函數(shù),且當x=60時,y=80;x=50時,y=100.在銷售過程中,每天還要支付其他費用450元.
(1)求出y與x的函數(shù)關系式.
(2)求該服裝店要想銷售這批秋衣日獲利750元,售價應定多少元?
(3)請銷售單價為多少元時,該服裝店日獲利最大?最大獲利是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在國家的宏觀調控下,某市的商品房成交價由今年3月份的5000元/m2下降到5月份的4050元/m2.
(1)問4、5兩月平均每月降價的百分率是多少?
(2)如果房價繼續(xù)回落,按此降價的百分率,你預測到7月分該市的商品房成交均價是否會跌破3000元/m2?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,,以點為圓心,長為半徑畫弧,與射線相交于點,連接,過點作,垂足為.
(1)線段與圖中現(xiàn)有的哪一條線段相等?你得出的結論是: ;
(2)證明你的結論.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com