【題目】某校初三年級進(jìn)行女子800米測試,甲、乙兩名同學(xué)同時起跑,甲同學(xué)先以a米/秒的速度勻速跑,一段時間后提高速度,以米/秒的速度勻速跑,b秒到達(dá)終點,乙同學(xué)在第60秒和第140秒時分別減慢了速度,設(shè)甲、乙兩名同學(xué)所的路程為s(米),乙同學(xué)所用的時間為t(秒),s與t之間的函數(shù)圖象如圖所示.
(1)乙同學(xué)起跑的速度為______米/秒;
(2)求a、b的值;
(3)當(dāng)乙同學(xué)領(lǐng)先甲同學(xué)60米時,直接寫出t的值是______.
【答案】(1)5;(2)a=3,b=200;(3)30或160.
【解析】
(1)根據(jù)乙同學(xué)在60秒時跑了300米可求出乙同學(xué)起跑的速度;
(2)甲同學(xué)100秒跑了300米,可求出甲的起跑速度,然后求出提速后的速度,用提速后的路程除以速度可得提速后跑的時間,然后可得b值;
(3)分情況討論,①在前60秒內(nèi),根據(jù)甲乙的速度列方程求解即可;②在t=140之后和甲乙相遇之前,分別求出對應(yīng)時間段的直線解析式,然后根據(jù)題意列方程即可.
解:(1)300÷60=5米/秒.
(2)由題意得:米/秒,米/秒,
秒.
(3)由題意得:①在t=60秒時,甲的路程=3×60=180米,乙的路程=60×5=300米,所以在前60秒內(nèi)有乙同學(xué)領(lǐng)先甲同學(xué)60米的情況,即:5t-3t=60,解得:t=30秒;②t=140秒時,甲的路程=300+5×(140-100)=500米,此時乙跑了620米,所以在t=140之后和甲乙相遇之前,有乙同學(xué)領(lǐng)先甲同學(xué)60米的情況,當(dāng)時,設(shè)乙同學(xué)時間和路程的關(guān)系式為y1=k1x+b,將(140,620)和(230,800)代入可求得y1=2x+340,設(shè)甲同學(xué)時間和路程的關(guān)系式為y2=k2x+b,將(100,300)和(200,800)代入可求得y2=5x-200,由2t+340-(5t-200)=60,解得:t=160秒;所以當(dāng)t=30或160時乙同學(xué)領(lǐng)先甲同學(xué)60米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,點為邊上的一個動點、過點作交邊于點,把線段繞點旋轉(zhuǎn)至(點與點對應(yīng)),點落在線段上,若恰好平分,則的長為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016廣西賀州市)如圖,將線段AB繞點O順時針旋轉(zhuǎn)90°得到線段A′B′,那么A(﹣2,5)的對應(yīng)點A′的坐標(biāo)是( 。
A. (2,5) B. (5,2) C. (2,﹣5) D. (5,﹣2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知為的直徑,線段是的弦且,與相切于點,為直徑,連接,.
(1)求證:與相切;
(2)求證:;
(3)若,,求的值和線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一條筆直的公路上有甲、乙兩地相距2400米,王明步行從甲地到乙地,每分鐘走96米,李越騎車從乙地到甲地后休息2分鐘沿原路原速返回乙地設(shè)他們同時出發(fā),運動的時間為(分),與乙地的距離為(米),圖中線段EF,折線分別表示兩人與乙地距離和運動時間之間的函數(shù)關(guān)系圖象
(1)李越騎車的速度為 米/分鐘;F點的坐標(biāo)為 ;
(2)求李越從乙地騎往甲地時, 與之間的函數(shù)表達(dá)式;
(3)求王明從甲地到乙地時, 與之間的函數(shù)表達(dá)式;
(4)求李越與王明第二次相遇時的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點C在⊙O上(不與A、B重合),∠ACB的平分線交AB于E,交⊙O于D,則下列結(jié)論不正確的是( )
A. AB2=2BD2 B. ACBC=CECD
C. BD2=DEDC D. ACBC+BD2=AB2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線l1:y=x2+c,當(dāng)其函數(shù)值y=1時,只有一個自變量x的值與其對應(yīng)
(1)求c的值;
(2)將拋物線l1經(jīng)過平移得到拋物線l2:y=(x﹣p)2﹣1.
①若拋物線l2與x軸交于A,B兩點(A在B的左側(cè)),與y軸交于點C,記△ABC的外心為P,當(dāng)﹣1≤p≤時,求點P的縱坐標(biāo)的取值范圍;
②當(dāng)0≤x≤2時,對于拋物線l1上任意點E,拋物線l2上總存在點F,使得點E、F縱坐標(biāo)相等,求p的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形的邊長為,,將正方形邊沿折疊到,延長交于,連接,現(xiàn)在有如下個結(jié)論:①;②;③;④.在以上個結(jié)論中,正確的有個.
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,四邊形是知形,,點是線段上一動點(不與重合),點是線段延長線上一動點,連接交于點.設(shè),已知與之間的函數(shù)關(guān)系如圖②所示.
(1)求圖②中與的函數(shù)表達(dá)式;
(2)求證:;
(3)是否存在的值,使得是等腰三角形?如果存在,求出的值;如果不存在,說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com