【題目】如圖,在四邊形ABCD中,AD∥BC,∠ABC=∠ADC,對(duì)角線AC、BD交于點(diǎn)O,AO=BO,DE平分∠ADC交BC于點(diǎn)E,連接OE.
(1)求證:四邊形ABCD是矩形;
(2)若AB=2,求△OEC的面積.
【答案】(1)詳見解析;(2)1
【解析】
(1)證出∠BAD=∠BCD,得出四邊形ABCD是平行四邊形,得出OA=OC,OB=OD,證出AC=BD,即可解決問題;
(2)作OF⊥BC于F.求出EC、OF即可解決問題;
(1)證明:∵AD∥BC,
∴∠ABC+∠BAD=180°,∠ADC+∠BCD=180°,
∵∠ABC=∠ADC,
∴∠BAD=∠BCD,
∴四邊形ABCD是平行四邊形,
∴OA=OC,OB=OD,
∵OA=OB,
∴AC=BD,
∴四邊形ABCD是矩形.
(2)解:作OF⊥BC于F,如圖所示.
∵四邊形ABCD是矩形,
∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,
∴AO=BO=CO=DO,
∴BF=FC,
∴OF=CD=1,
∵DE平分∠ADC,∠ADC=90°,
∴∠EDC=45°,
在Rt△EDC中,EC=CD=2,
∴△OEC的面積=ECOF=1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:經(jīng)過三角形一邊中點(diǎn),且平分三角形周長(zhǎng)的直線叫做這個(gè)三角形在該邊上的中分線,其中落在三角形內(nèi)部的部分叫做中分線段.
(1)如圖,△ABC中,AC>AB,DE是△ABC在BC邊上的中分線段,F為AC中點(diǎn),過點(diǎn)B作DE的垂線交AC于點(diǎn)G,垂足為H,設(shè)AC=b,AB=c.
①求證:DF=EF;
②若b=6,c=4,求CG的長(zhǎng)度;
(2)若題(1)中,S△BDH=S△EGH,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大橋采用低塔斜拉橋橋型(如甲圖),圖乙是從圖甲引申出的平面圖,假設(shè)你站在橋上測(cè)得拉索AB與水平橋面的夾角是30°,拉索CD與水平橋面的夾角是60°,兩拉索頂端的距離BC為2米,兩拉索底端距離AD為20米,請(qǐng)求出立柱BH的長(zhǎng).(結(jié)果精確到0.1米, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,且AB=12,點(diǎn)C為半圓上的一點(diǎn).將此半圓沿BC所在的直線折疊,若圓弧BC恰好過圓心O,則圖中陰影部分的面積是( 。
A. 4πB. 5πC. 6πD. 8π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】江門旅游文化節(jié)開幕前,某茶葉公司預(yù)測(cè)今年茶葉能夠暢銷,就用32000元購(gòu)進(jìn)了一批茶葉,上市后很快脫銷,茶葉公司又用68000元購(gòu)進(jìn)第二批茶葉,所購(gòu)數(shù)量是第一批購(gòu)進(jìn)數(shù)量的2倍,但每千克茶葉進(jìn)價(jià)多了10元.
(1)該茶葉公司兩次共購(gòu)進(jìn)這種茶葉多少千克?
(2)如果這兩批茶葉每千克的售價(jià)相同,且全部售完后總利潤(rùn)率不低于20%,那么每千克售價(jià)至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2﹣3ax+c的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C直線y=﹣x+4經(jīng)過點(diǎn)B、C.
(1)求拋物線的表達(dá)式;
(2)過點(diǎn)A的直線交拋物線于點(diǎn)M,交直線BC于點(diǎn)N.
①點(diǎn)N位于x軸上方時(shí),是否存在這樣的點(diǎn)M,使得AM:NM=5:3?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
②連接AC,當(dāng)直線AM與直線BC的夾角∠ANB等于∠ACB的2倍時(shí),請(qǐng)求出點(diǎn)M的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于點(diǎn)D,點(diǎn)P從點(diǎn)D出發(fā),沿線段DC向點(diǎn)C運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā),沿線段CA向點(diǎn)A運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),速度都為每秒1個(gè)單位長(zhǎng)度,當(dāng)點(diǎn)P運(yùn)動(dòng)到C時(shí),兩點(diǎn)都停止.設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求線段CD的長(zhǎng);
(2)當(dāng)△CPQ與△BDC相似時(shí),求t值;
(3) 設(shè)△CPQ的面積為y,求y與t的函數(shù)關(guān)系式,并判斷△PCQ的面積是否有最大值還是最小值?若有,求出t為何值時(shí)y的最值,若沒有,則說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,CD∥AB,∠ABC=90°,AB=BC,將△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°得到△BAE,連接CE,過點(diǎn)B作BG⊥CE于點(diǎn)F,交AD于點(diǎn)G.
(1)如圖1,CD=AB.
①求證:四邊形ABCD是正方形;
②求證:G是AD中點(diǎn);
(2)如圖2,若CD<AB,請(qǐng)判斷G是否仍然是AD的中點(diǎn)?若是,請(qǐng)證明:若不是,請(qǐng)說理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個(gè)三角形一條邊的平方等于另兩條邊的乘積,我們把這個(gè)三角形叫做比例三角形.
已知是比例三角形,,,請(qǐng)直接寫出所有滿足條件的AC的長(zhǎng);
如圖1,在四邊形ABCD中,,對(duì)角線BD平分,求證:是比例三角形.
如圖2,在的條件下,當(dāng)時(shí),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com