【題目】江門旅游文化節(jié)開幕前,某茶葉公司預(yù)測(cè)今年茶葉能夠暢銷,就用32000元購進(jìn)了一批茶葉,上市后很快脫銷,茶葉公司又用68000元購進(jìn)第二批茶葉,所購數(shù)量是第一批購進(jìn)數(shù)量的2,但每千克茶葉進(jìn)價(jià)多了10

(1)該茶葉公司兩次共購進(jìn)這種茶葉多少千克?

(2)如果這兩批茶葉每千克的售價(jià)相同,且全部售完后總利潤(rùn)率不低于20%,那么每千克售價(jià)至少是多少元?

【答案】(1)600;(2)200.

【解析】

(1)設(shè)茶葉公司公司第一次購x千克茶葉,則第二次購進(jìn)2x千克茶葉,根據(jù)單價(jià)=總價(jià)÷數(shù)量結(jié)合第二次購進(jìn)茶葉每千克比第一次購進(jìn)的貴10元,即可得出關(guān)于x的分式方程,解之并檢驗(yàn)后即可得出結(jié)論;
(2)設(shè)每千克茶葉售價(jià)y元,根據(jù)利潤(rùn)=銷售收入-成本,即可得出關(guān)于y的一元一次不等式,解之取其最小值即可得出結(jié)論.

(1)設(shè)茶葉公司第一次購x千克茶葉,則第二次購進(jìn)2x千克茶葉,
根據(jù)題意得:,

解得:x=200,
經(jīng)檢驗(yàn),x=200是原方程的根,且符合題意,
2x+x=2×200+200=600.
答:茶葉公司兩次共購進(jìn)這種茶葉600千克.
(2)設(shè)每千克茶葉售價(jià)y元,
根據(jù)題意得:600y-32000-68000≥(32000+68000)×20%,
解得:y≥200.
答:每千克茶葉的售價(jià)至少是200元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A0,1),B4,2),C20).

1)將△ABC沿y軸翻折得到△A1B1C1,畫出△A1B1C1;

2)將△ABC繞著點(diǎn)(﹣1,﹣1)旋轉(zhuǎn)180°得到△A2B2C2,畫出△A2B2C2;

3)線段B2C2可以看成是線段B1C1繞著平面直角坐標(biāo)系中某一點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,直接寫出旋轉(zhuǎn)中心的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)yax2+bx+4的圖象與x軸交于點(diǎn)A(4,0)和點(diǎn)D(1,0),與y軸交于點(diǎn)C,過點(diǎn)CBC平行于x軸交拋物線于點(diǎn)B,連接AC

(1)求這個(gè)二次函數(shù)的表達(dá)式;

(2)點(diǎn)M從點(diǎn)O出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A運(yùn)動(dòng);點(diǎn)N從點(diǎn)B同時(shí)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停動(dòng),過點(diǎn)NNQ垂直于BCAC于點(diǎn)Q,連結(jié)MQ.

①求△AQM的面積S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系式,寫出自變量的取值范圍;當(dāng)t為何值時(shí),S有最大值,并求出S的最大值;

②是否存在點(diǎn)M,使得△AQM為直角三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某旅行團(tuán)32人在景區(qū)A游玩,他們由成人、少年和兒童組成.已知兒童10人,成人比少年多12人.

1)求該旅行團(tuán)中成人與少年分別是多少人?

2)因時(shí)間充裕,該團(tuán)準(zhǔn)備讓成人和少年(至少各1名)帶領(lǐng)10名兒童去另一景區(qū)B游玩.景區(qū)B的門票價(jià)格為100元/張,成人全票,少年8折,兒童6折,一名成人可以免費(fèi)攜帶一名兒童.

①若由成人8人和少年5人帶隊(duì),則所需門票的總費(fèi)用是多少元?

②若剩余經(jīng)費(fèi)只有1200元可用于購票,在不超額的前提下,最多可以安排成人和少年共多少人帶隊(duì)?求所有滿足條件的方案,并指出哪種方案購票費(fèi)用最少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AM是⊙O直徑,弦BCAM,垂足為點(diǎn)N,弦CDAM于點(diǎn)E,連按ABBE

1)如圖1,若CDAB,垂足為點(diǎn)F,求證:∠BED2BAM;

2)如圖2,在(1)的條件下,連接BD,若∠ABE=∠BDC,求證:AE2CN;

3)如圖3,ABCD,BECD47AE11,求EM的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,∠ABC=∠ADC,對(duì)角線ACBD交于點(diǎn)O,AOBO,DE平分∠ADCBC于點(diǎn)E,連接OE

1)求證:四邊形ABCD是矩形;

2)若AB2,求△OEC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)試銷一種成本為50元/件的恤.經(jīng)試銷發(fā)現(xiàn),銷售量(件)與銷售單價(jià)(元/件)符合一次函數(shù)關(guān)系,試銷數(shù)據(jù)如下表:

售價(jià)(元/件)

……

55

60

70

……

銷量(件)

……

75

70

60

……

(1)求一次函數(shù)的表達(dá)式;

(2)若該商場(chǎng)獲得利潤(rùn)為W元,試寫出利潤(rùn)W與銷售單價(jià)之間的關(guān)系式;銷售單價(jià)定為多少時(shí),商場(chǎng)可獲得最大利潤(rùn),最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某家庭記錄了未使用節(jié)水龍頭50天的日用水量(單位:m3)和使用了節(jié)木龍頭50天的日用水量,得到頻數(shù)分布表如下:

1未使用節(jié)水龍頭50天的日用水量頻數(shù)分布表

日用水量x

0≤x<0.1

0.1≤x<0.2

0.2≤x<0.3

0.3≤x<0.4

0.4≤x<0.5

0.5≤x<0.6

0.6≤x≤0.7

頻數(shù)

1

3

2

4

9

26

5

2使用了節(jié)水龍頭50天的日用水量頻數(shù)分布表

日用水量x

0≤x<0.1

0.1≤x<0.2

0.2≤x<0.3

0.3≤x<0.4

0.4≤x<0.5

0.5≤x<0.6

頻數(shù)

1

5

13

10

16

5

(1)估計(jì)該家庭使用節(jié)水龍頭后,日用水量小于0.3 m3的概率;

(2)估計(jì)該家庭使用節(jié)水龍頭后,一年能節(jié)省多少水?(一年按365天計(jì)算,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在范圍的組中值作代表.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( 。

A. 要了解一批燈泡的使用壽命,采用全面調(diào)查的方式

B. 要了解全市居民對(duì)環(huán)境的保護(hù)意識(shí),采用抽樣調(diào)查的方式

C. 一個(gè)游戲的中獎(jiǎng)率是1%,則做100次這樣的游戲一定會(huì)中獎(jiǎng)

D. 若甲組數(shù)據(jù)的方差S20.05,乙組數(shù)據(jù)的方差S20.1,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定

查看答案和解析>>

同步練習(xí)冊(cè)答案