【題目】如圖,在⊙O 中,AB 是直徑,點 D 是⊙O 上一點,點 C 是弧 AD 的中點,CE⊥AB 于點 E,過點 D 的切線交 EC 的延長線于點 G,連接 AD,分別交 CE,CB 于點 P,Q,連接 AC.
(1)求證:GP=GD.
(2)下列結論:①∠BAD=∠ABC;②點 P 是△ACQ 的外心,其中正確結論是 .(只需填寫序號).
【答案】(1)證明見解析;(2)②.
【解析】
連接OD,利用切線的性質,可得出∠GPD=∠GDP,利用等角對等邊可得出GP=GD;
(2)由于弧AC 與弧BD不一定相等,根據(jù)圓周角定理可知①錯誤;先由垂徑定理得到A為弧CF的中點,再由C為弧AD的中點,得到弧CD=弧AF,根據(jù)等弧所對的圓周角相等可得出∠CAP=∠ACP,利用等角對等邊可得出AP=CP,又AB為直徑得到∠ACQ為直角,由等角的余角相等可得出∠PCQ=∠PQC,得出CP=PQ,即P為直角三角形ACQ斜邊上的中點,即為直角三角形ACQ的外心,可知②正確;
解:(1)連接OD,
則OD⊥GD,∠OAD=∠ODA,
∵∠ODA+∠GDP=90°,∠EPA+∠EAP=∠EAP+∠GPD=90°,
∴∠GPD=∠GDP;
∴GP=GD;
(2)∵在⊙O中,AB是直徑,點D是⊙O上一點,點C是弧AD的中點,
∴弧AC=弧CD≠弧BD,
∴∠BAD≠∠ABC,故①錯誤;
∵弦CF⊥AB于點E,
∴A為弧CF的中點,即弧AF=弧AC,
又∵C為弧AD的中點,
∴弧AC=弧CD,
∴弧AF=弧CD,
∴∠CAP=∠ACP,
∴AP=CP.
∵AB為圓O的直徑,
∴∠ACQ=90°,
∴∠PCQ=∠PQC,
∴PC=PQ,
∴AP=PQ,即P為Rt△ACQ斜邊AQ的中點,
∴P為Rt△ACQ的外心,故②正確;
故答案為:②.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與軸,軸分別交于,兩點,且.
(1)求點的坐標和的值;
(2)若點是直線第一象限部分上的一個動點,試寫出的面積與的函數(shù)關系式;
(3)點在直線運動,當點運動到什么位置時,的面積是?求出此時點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB、CD分別與半圓OO切于點A,D,BC切⊙O于點E.若AB=4,CD=9,則⊙O的半徑為( 。
A. 12 B. C. 6 D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x+3與兩坐標軸交于A、B兩點,拋物線y=﹣x2+bx+c過A、B兩點,且交x軸的正半軸于點C.
(1)求A、B兩點的坐標;
(2)求拋物線的解析式和點C的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰 Rt△ABC 中,AC=BC=2,點 P 在以斜邊 AB 為直徑的半圓上,M 為 PC 的中點.當點 P 沿半圓從點A 運動至點 B 時,點 M 運動的路徑長是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,動點E、F分別從D、C兩點同時出發(fā),以相同的速度分別在邊DC、CB上移動,當點E運動到點C時都停止運動,DF與AE相交于點P,若AD=8,則點P運動的路徑長為( 。
A. 8 B. 4 C. 4π D. 2π
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市每年都舉行“希望杯”籃球賽,去年初賽階段,共15支隊伍參賽,每兩隊之間都比賽一場,下表是去年初賽部分隊伍的積分榜.
隊名 | 比賽場次 | 勝場 | 負場 | 積分 |
A | 14 | 10 | 4 | 24 |
B | 14 | 9 | 5 | 23 |
C | 14 | 4 | 10 | 18 |
D | 14 | 0 | 14 | 14 |
(1)去年某隊的總積分為20分,則該隊在比賽中勝了多少場?
(2)今年,參賽的隊伍比去年有所增加,但因場地受限,組委會決定初賽階段共安排40場比賽,并將參賽隊伍平均分成4個小組,各小組每兩隊之間都比賽一場,求今年比去年增加了多少支隊伍?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①, 已知△ABC中, ∠BAC=90°, AB=AC, AE是過A的一條直線, 且B、C在AE的異側, BD⊥AE于D, CE⊥AE于E.
(1)求證: BD=DE+CE.
(2)若直線AE繞A點旋轉到圖②位置時(BD<CE), 其余條件不變, 問BD與DE、CE的數(shù)量關系如何? 請給予證明;
(3)若直線AE繞A點旋轉到圖③位置時(BD>CE), 其余條件不變, 問BD與DE、CE的數(shù)量關系如何? 請直接寫出結果, 不需證明.
(4)根據(jù)以上的討論,請用簡潔的語言表達BD與DE,CE的數(shù)量關系。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“高低杠”是女子體操特有的一個競技項目,其比賽器材由高、低兩根平行杠及若干支架組成,運動員可根據(jù)自己的身高和習慣在規(guī)定范圍內調節(jié)高、低兩杠間的距離.某興趣小組根據(jù)高低杠器材的一種截面圖編制了如下數(shù)學問題,請你解答.
如圖所示,底座上A,B兩點間的距離為90cm.低杠上點C到直線AB的距離CE的長為155cm,高杠上點D到直線AB的距離DF的長為234cm,已知低杠的支架AC與直線AB的夾角∠CAE為82.4°,高杠的支架BD與直線AB的夾角∠DBF為80.3°.求高、低杠間的水平距離CH的長.(結果精確到1cm,參考數(shù)據(jù)sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com