【題目】ABC在直角坐標(biāo)系內(nèi)的位置如圖所示.

1)請直接寫出A、BC的坐標(biāo);

2)請在這個坐標(biāo)系內(nèi)畫出A1B1C1,使A1B1C1ABC關(guān)于y軸對稱,并寫出B1的坐標(biāo);

3)計算A1B1C1面積.

【答案】(1)A0,3);B-4,4);C-2,1);(2B14,4),見詳解;(35

【解析】

1)觀察平面直角坐標(biāo)系,根據(jù)點與坐標(biāo)系的關(guān)系,即可求得A、B、C的坐標(biāo);
2)根據(jù)關(guān)于y軸對稱的圖形的特點,首先求得各對稱點的坐標(biāo),繼而畫出△A1B1C1;

3)利用割補法求解可得.

解:(1A0,3);B-4,4);C-2,1);

2)如圖:B1的坐標(biāo)為:(4,4);

(3)A1B1C1的面積為4×3-×2×2-×2×3-×1×4=5.

故答案為:(1)A0,3);B-4,4);C-21);(2B14,4),見詳解;(35

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1=∠2,則下列條件中,不能使△ABC≌△DBC成立的是。ā 。

A. ABCD B. ACBD C. A=∠D D. ABC=∠DCB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠C=Rt∠,AC=8cm,BC=6cm,若動點P從點C開始,按C→A→B→C的路徑運動,且速度為每秒2cm,設(shè)運動的時間為t秒。

(1)當(dāng)t為何值時,CP把△ABC的周長分成相等的兩部分。

(2)當(dāng)t為何值時,CP把△ABC的面積分成相等的兩部分,并求出此時CP的長;

(3)當(dāng)t為何值時,△BCP為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一種實驗用軌道彈珠,在軌道上行駛5分鐘后離開軌道,前2分鐘其速度v(米/分)與時間t(分)滿足二次函數(shù)v=at2,后三分鐘其速度v(米/分)與時間t(分)滿足反比例函數(shù)關(guān)系,如圖,軌道旁邊的測速儀測得彈珠1分鐘末的速度為2米/分,求:

(1)二次函數(shù)和反比例函數(shù)的關(guān)系式.

(2)彈珠在軌道上行駛的最大速度.

【答案】(1)v=(2<t≤5) (2)8米/分

【解析】分析:(1)由圖象可知前一分鐘過點(1,2),后三分鐘時過點(2,8),分別利用待定系數(shù)法可求得函數(shù)解析式;

(2)把t=2代入(1)中二次函數(shù)解析式即可.

詳解:(1)v=at2的圖象經(jīng)過點(1,2),

a=2.

∴二次函數(shù)的解析式為:v=2t2,(0≤t≤2);

設(shè)反比例函數(shù)的解析式為v=,

由題意知,圖象經(jīng)過點(2,8),

k=16,

∴反比例函數(shù)的解析式為v=(2<t≤5);

(2)∵二次函數(shù)v=2t2,(0≤t≤2)的圖象開口向上,對稱軸為y軸,

∴彈珠在軌道上行駛的最大速度在2秒末,為8/分.

點睛:本題考查了反比例函數(shù)和二次函數(shù)的應(yīng)用.解題的關(guān)鍵是從圖中得到關(guān)鍵性的信息:自變量的取值范圍和圖象所經(jīng)過的點的坐標(biāo).

型】解答
結(jié)束】
24

【題目】閱讀材料:小胖同學(xué)發(fā)現(xiàn)這樣一個規(guī)律:兩個頂角相等的等腰三角形,如果具有公共的頂角的頂點,并把它們的底角頂點連接起來則形成一組旋轉(zhuǎn)全等的三角形.小胖把具有這個規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小胖發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則BD=CE.

(1)在圖1中證明小胖的發(fā)現(xiàn);

借助小胖同學(xué)總結(jié)規(guī)律,構(gòu)造“手拉手”圖形來解答下面的問題:

(2)如圖2,AB=BC,∠ABC=∠BDC=60°,求證:AD+CD=BD;

(3)如圖3,在ABC中,AB=AC,BAC=m°,點E為ABC外一點,點D為BC中點,∠EBC=∠ACF,ED⊥FD,求EAF的度數(shù)(用含有m的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)校開展的數(shù)學(xué)活動課上,小明和小剛制作了一個正三樓錐(質(zhì)量均勻,四個面完全相同),并在各個面上分別標(biāo)記數(shù)字1,2,3,4,游戲規(guī)則如下每人投擲三棱錐兩次,并記錄底面的數(shù)字,如果兩次所擲數(shù)字的和為單數(shù),那么算小明贏,如果兩歡所擲數(shù)字的和為偶數(shù),那么算小明贏;

(1)請用列表或者面樹狀圍的方法表示上述游戲中的所有可能結(jié)果.

(2)請分別隸出小明和小剛能贏的概率,并判新游戲的公平性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線x軸交于點A,與y軸交于點C.拋物線經(jīng)過A,C兩點,且與x軸交于另一點BB在點A右側(cè)

1求拋物線的解析式及點B坐標(biāo);

2若點M是線段BC上的一動點,過點M的直線EF平行y軸交x軸于點F,交拋物線于點E.求ME長的最大值;

3試探究當(dāng)ME取最大值時,在拋物線上、x軸下方是否存在點P,使以M,F(xiàn),B,P為頂點的四邊形是平行四邊形?若存在,請求出點P的坐標(biāo);若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC,AC⊥CB,AC=15,AB=25,D為斜邊上動點。

(1)如圖,過點DDE⊥ABCB于點E,連接AE,當(dāng)AE平分∠CAB時,求CE;

(2)如圖在點D的運動過程中,連接CD,若△ACD為等腰三角形,求AD。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:

材料一:兩個含有二次根式的非零代數(shù)式相乘,如果它們的積不含二次根式,那么這兩個代數(shù)式互為有理化因式.

例如:,我們稱的一個有理化因式是的一個有理化因式是.

材料二:如果一個代數(shù)式的分母中含有二次根式,通?蓪⒎肿、分母同乘分母的有理化因式,使分母中不含根號,這種變形叫做分母有理化.

例如:,

請你仿照材料中的方法探索并解決下列問題:

(1)的有理化因式為______的有理化因式為______.(均寫出一個即可)

(2)將下列各式分母有理化(要求寫出變形過程)

.

.

(3)請從下列A,B兩題中任選一題作答,我選擇題.

A計算:的結(jié)果為______.

B計算:的結(jié)果為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知港口A東偏南10°方向有一處小島B,一艘貨輪從港口A沿南偏東40°航線出發(fā),行駛80海里到達C處,此時觀測小島B在北偏東60°方向.

(1)求此時貨輪到小島B的距離.

(2)在小島周圍36海里范圍內(nèi)是暗礁區(qū),此時輪船向正東方向航行有沒有觸礁危險?請作出判斷并說明理由.

查看答案和解析>>

同步練習(xí)冊答案