【題目】如圖,△ABC三個頂點的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
(1)請畫出△ABC向左平移5個單位長度后得到的△A1B1C1;
(2)請畫出△ABC關(guān)于原點對稱的△A2B2C2;并寫出點A2、B2、C2坐標(biāo);
(3)請畫出△ABC繞O逆時針旋轉(zhuǎn)90°后的△A3B3C3;并寫出點A3、B3、C3坐標(biāo).
【答案】(1)見解析;(2)見解析,A2(﹣1,﹣1)、B2(﹣4,﹣2)、C2(﹣3,﹣4);(3)見解析,A3(﹣1,1)、B3(﹣2,4)、C3(﹣4,3).
【解析】
(1)利用平移的性質(zhì)得出對應(yīng)點的位置進(jìn)而得出答案
(2)利用關(guān)于原點對稱點的性質(zhì)得出對應(yīng)點的位置進(jìn)而得出答案
(3)利用旋轉(zhuǎn)的性質(zhì)得出旋轉(zhuǎn)后的點的坐標(biāo)進(jìn)而得出答案
解:(1)如圖,△A1B1C1即為所求;
(2)如圖,△A2B2C2即為所求,A2(﹣1,﹣1)、B2(﹣4,﹣2)、C2(﹣3,﹣4);
(3)如圖,△A3B3C3即為所求,A3(﹣1,1)、B3(﹣2,4)、C3(﹣4,3).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,并回答問題.事實上,在任何一個直角三角形中,兩條直角邊的平方之和一定等于斜邊的平方,這個結(jié)論就是著名的勾股定理.請利用這個結(jié)論,完成下面活動:
一個直角三角形的兩條直角邊分別為,那么這個直角三角形斜邊長為____;
如圖①,于,求的長度;
如圖②,點在數(shù)軸上表示的數(shù)是____請用類似的方法在圖2數(shù)軸上畫出表示數(shù)的點(保留痕跡).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在平面直角坐標(biāo)系中,點,,過點作直線與軸互相垂直,為軸上的一個動點,且.
(1)如圖1,若點是第二象限內(nèi)的一個點,且時,求點的坐標(biāo);(用的代數(shù)式表示)
(2)如圖2,若點是第三象限內(nèi)的一個點,設(shè)點的坐標(biāo),求的取值范圍:
(3)如圖3,連接,作的平分線,點、分別是射線與邊上的兩個動點,連接、,當(dāng)時,試求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)著作《九章算術(shù)》中的一個問題.原文是:今有池方一丈,葭生其中央,出水尺.引葭赴岸,適與岸齊問水深、葭長各幾何譯文大意是:如圖,有一個水池,水面是一個邊長為10尺的正方形,在水池正中央有一根蘆葦,它高出水面1尺.如果把這根蘆葦拉向水池邊的中點,它的頂端恰好到達(dá)池邊的水面.問水的深度與這根蘆葦?shù)拈L度分別是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,以□ABCD的較短邊CD為一邊作菱形CDEF,使點F落在邊AD上,連接BE,交AF于點G.
(1)猜想BG與EG的數(shù)量關(guān)系.并說明理由;
(2)延長DE,BA交于點H,其他條件不變,
①如圖2,若∠ADC=60°,求的值;
②如圖3,若∠ADC=α(0°<α<90°),直接寫出的值.(用含α的三角函數(shù)表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BC=10,BC邊上的高為3.將點A繞點B逆時針旋轉(zhuǎn)90°得到點E,繞點C順時針旋轉(zhuǎn)90°得到點D.沿BC翻折得到點F,從而得到一個凸五邊形BFCDE,求五邊形BFCDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,DC⊥BC,且∠B=45°,AD=DC=1,點M為邊BC上一動點,聯(lián)結(jié)AM并延長交射線DC于點F,作∠FAE=45°交射線BC于點E、交邊DCN于點N,聯(lián)結(jié)EF.
(1)當(dāng)CM:CB=1:4時,求CF的長.
(2)設(shè)CM=x,CE=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域.
(3)當(dāng)△ABM∽△EFN時,求CM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結(jié)AP并延長交BC于點D,則下列說法中正確的個數(shù)是
①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的中垂線上;④S△DAC:S△ABC=1:3.
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某班甲、乙、丙三位同學(xué)最近5次數(shù)學(xué)成績及其所在班級相應(yīng)平均分的折線統(tǒng)計圖,則下列判斷錯誤的是( ).
A. 甲的數(shù)學(xué)成績高于班級平均分,且成績比較穩(wěn)定
B. 乙的數(shù)學(xué)成績在班級平均分附近波動,且比丙好
C. 丙的數(shù)學(xué)成績低于班級平均分,但成績逐次提高
D. 就甲、乙、丙三個人而言,乙的數(shù)學(xué)成績最不穩(wěn)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com