【題目】為了解市民對(duì)“垃圾分類知識(shí)”的知曉程度,某數(shù)學(xué)學(xué)習(xí)興趣小組對(duì)市民進(jìn)行 隨機(jī)抽樣的問(wèn)卷調(diào)查,調(diào)查結(jié)果分為“A.非常了解”、“B.了解”、“C.基本了解”、“D.不太了解”四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖(圖1,圖2), 請(qǐng)根據(jù)圖中的信息解答下列問(wèn)題.

1)這次調(diào)查的市民人數(shù)為________人,圖2中,_________;

2)圖1中的條形統(tǒng)計(jì)圖中B等級(jí)的人數(shù);

3)在圖2中的扇形統(tǒng)計(jì)圖中,求“C.基本了解”所在扇形的圓心角度數(shù);

4)據(jù)統(tǒng)計(jì),2018年該市約有市民500萬(wàn)人,那么根據(jù)抽樣調(diào)查的結(jié)果,可估計(jì)對(duì)“垃圾分類知識(shí)”的知曉程度為“A.非常了解”的市民約有多少萬(wàn)人?

【答案】11000,35;(2350;(372°;(4)約有140萬(wàn)人

【解析】

1)用條形統(tǒng)計(jì)圖中C等級(jí)的人數(shù)除以扇形統(tǒng)計(jì)圖中C等級(jí)所占百分比即可求出本次調(diào)查的人數(shù),用A等級(jí)的人數(shù)除以總?cè)藬?shù)即可求出m,然后用1減去其它三個(gè)等級(jí)所占百分比即可求出n;

2)用總?cè)藬?shù)×n%即為B等級(jí)的人數(shù);

3)用360°×C等級(jí)所占百分比即可求出結(jié)果;

4)用500萬(wàn)×A等級(jí)所占百分比即得結(jié)果.

解:(1)這次調(diào)查的市民人數(shù)為(人),

;

故答案為:1000,35

2(人),

答:等級(jí)的人數(shù)是350人;

3

答:“C.基本了解”所在扇形的圓心角度數(shù)為72°;

4)根據(jù)題意得:(萬(wàn)人),

答:估計(jì)對(duì)“垃圾分類知識(shí)”的知曉程度為“A.非常了解”的市民約有140萬(wàn)人.

【等級(jí)】

本題考查了條形統(tǒng)計(jì)圖、扇形統(tǒng)計(jì)圖和利用樣本估計(jì)總體等知識(shí),屬于基本題型,正確理解題意、熟練掌握上述基本知識(shí)是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形內(nèi)接于,點(diǎn)上一點(diǎn),連接、、

(1)如圖1,求證:DEC+BEC= 180°;

(2)如圖2,過(guò)點(diǎn)CCFCEBE于點(diǎn)F,連接AF MAE的中點(diǎn),連接DM并延長(zhǎng)交AF于點(diǎn)N,求證: DNAF

(3)如圖3,在(2) 的條件下,連接OM,若AB=10,OM的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,以點(diǎn)P(2,a)為圓心的⊙Py軸相切,直線y=x與⊙P相交于點(diǎn)A、B,且AB的長(zhǎng)為2,則a的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,點(diǎn)是直線上的一動(dòng)點(diǎn)(不與點(diǎn)重合),連接的右側(cè)以為斜邊作等腰直角三角形.點(diǎn)的中點(diǎn),連接.

[問(wèn)題發(fā)現(xiàn)]

1)如圖(1),當(dāng)點(diǎn)的中點(diǎn)時(shí),線段的數(shù)量關(guān)系是______,的位置關(guān)系是______;

 

[猜想論證]

2)如圖(2),當(dāng)點(diǎn)在邊上且不是的中點(diǎn)時(shí),(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)僅就圖(2)中的情況給出證明;若不成立,請(qǐng)說(shuō)明理由.

[拓展應(yīng)用]

3)若,其他條件不變,連接.當(dāng)是等邊三角形時(shí),請(qǐng)直接寫(xiě)出的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)A,C分別是直線y=x+4與坐標(biāo)軸的交點(diǎn),點(diǎn)B的坐標(biāo)為(﹣2,0),點(diǎn)D是邊AC上的一點(diǎn),DEBC于點(diǎn)E,點(diǎn)F在邊AB上,且D,F兩點(diǎn)關(guān)于y軸上的某點(diǎn)成中心對(duì)稱,連結(jié)DF,EF.設(shè)點(diǎn)D的橫坐標(biāo)為m,EF2l,請(qǐng)?zhí)骄浚?/span>

①線段EF長(zhǎng)度是否有最小值.

②△BEF能否成為直角三角形.

小明嘗試用觀察﹣猜想﹣驗(yàn)證﹣應(yīng)用的方法進(jìn)行探究,請(qǐng)你一起來(lái)解決問(wèn)題.

1)小明利用幾何畫(huà)板軟件進(jìn)行觀察,測(cè)量,得到lm變化的一組對(duì)應(yīng)值,并在平面直角坐標(biāo)系中以各對(duì)應(yīng)值為坐標(biāo)描點(diǎn)(如圖2).請(qǐng)你在圖2中連線,觀察圖象特征并猜想lm可能滿足的函數(shù)類別.

2)小明結(jié)合圖1,發(fā)現(xiàn)應(yīng)用三角形和函數(shù)知識(shí)能驗(yàn)證(1)中的猜想,請(qǐng)你求出l關(guān)于m的函數(shù)表達(dá)式及自變量的取值范圍,并求出線段EF長(zhǎng)度的最小值.

3)小明通過(guò)觀察,推理,發(fā)現(xiàn)△BEF能成為直角三角形,請(qǐng)你求出當(dāng)△BEF為直角三角形時(shí)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著網(wǎng)絡(luò)資源日趨豐富,更多人選擇在線自主學(xué)習(xí),在線學(xué)習(xí)方式有在線閱讀、在線聽(tīng)課、在線答題、在線討論.濟(jì)川中學(xué)初二年級(jí)隨機(jī)抽取部分學(xué)生進(jìn)行你對(duì)哪類在線學(xué)習(xí)方式最感興趣的調(diào)查(每位同學(xué)只能選一項(xiàng)),并根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.根據(jù)圖中信息,解答下列問(wèn)題:

1)補(bǔ)全條形統(tǒng)計(jì)圖;

2)求扇形統(tǒng)計(jì)圖中在線閱讀對(duì)應(yīng)的扇形圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校體育社團(tuán)活動(dòng)計(jì)劃開(kāi)設(shè)足球、籃球、排球、乒乓球四個(gè)體育興趣小組,每個(gè)學(xué)生只能選報(bào)一項(xiàng)參加活動(dòng),為了解該社團(tuán)成員選擇興趣小組的情況,某調(diào)查小組在社團(tuán)中進(jìn)行了一次抽樣調(diào)查,繪制了如下尚不完整的統(tǒng)計(jì)圖表.

根據(jù)以上信息解答下列問(wèn)題:

1)本次抽樣調(diào)查的樣本容量為 ,扇形統(tǒng)計(jì)圖中的值為

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)若該學(xué)校有學(xué)生人,有的學(xué)生選擇了參加體育社團(tuán)活動(dòng),請(qǐng)你估計(jì)該校選擇排球和足球這兩個(gè)興趣小組的學(xué)生大約共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明大學(xué)畢業(yè)回家鄉(xiāng)創(chuàng)業(yè),第一期培植盆景與花卉各50盆售后統(tǒng)計(jì),盆景的平均每盆利潤(rùn)是160,花卉的平均每盆利潤(rùn)是19調(diào)研發(fā)現(xiàn):

①盆景每增加1,盆景的平均每盆利潤(rùn)減少2;每減少1,盆景的平均每盆利潤(rùn)增加2;②花卉的平均每盆利潤(rùn)始終不變.

小明計(jì)劃第二期培植盆景與花卉共100設(shè)培植的盆景比第一期增加x,第二期盆景與花卉售完后的利潤(rùn)分別為W1,W2(單位元)

(1)用含x的代數(shù)式分別表示W1,W2;

(2)當(dāng)x取何值時(shí),第二期培植的盆景與花卉售完后獲得的總利潤(rùn)W最大最大總利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O切線,切點(diǎn)為A,OB與⊙O交于E,CD是圓上的兩點(diǎn),且CA平分∠DCE,若AB,∠B30°,則DE的長(zhǎng)是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案