精英家教網 > 初中數學 > 題目詳情

【題目】如圖,四邊形為菱形,已知,

1)求點的坐標;

2)求經過點,兩點的一次函數的解析式.

3)求菱形的面積.

【答案】1C0);(2;(315

【解析】

1)利用勾股定理求出AB,再利用菱形的性質求出OC的長即可.
2)求出C,D兩點坐標,利用待定系數法即可解決問題.
3)利用菱形的面積公式計算即可.

解:(1)∵A30),B0,4),
OA=3,OB=4
AB=5,
∵四邊形ABCD是菱形,
BC=AB=5,
OC=1
C0,-1);

2)由題意,四邊形為菱形,C0,-1),

D3,-5),

設直線CD的解析式為y=kx+b,

,

解得:

∴直線CD的解析式為

3)∵,

S菱形ABCD=5×3=15

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在矩形OABC中,AO=10,AB=8,沿直線CD折疊矩形OABC的一邊BC,使點B落在OA邊上的點E處.分別以OC,OA所在的直線為x軸,y軸建立平面直角坐標系,拋物線y=ax2+bx+c經過O,D,C三點.

1)求AD的長及拋物線的解析式;

2)一動點P從點E出發(fā),沿EC以每秒2個單位長的速度向點C運動,同時動點Q從點C出發(fā),沿CO以每秒1個單位長的速度向點O運動,當點P運動到點C時,兩點同時停止運動.設運動時間為t秒,當t為何值時,以P、Q、C為頂點的三角形與△ADE相似?

3)點N在拋物線對稱軸上,點M在拋物線上,是否存在這樣的點M與點N,使以MN,C,E為頂點的四邊形是平行四邊形?若存在,請直接寫出點M與點N的坐標(不寫求解過程);若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,是等邊三角形內一點,將線段繞點順時針旋轉60°得到線段,連接.若,,,則四邊形的面積為___________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數 y=ax2+bx+c(a≠0),過(1,y1)(2,y2).

①若 y1>0 時,則 a+b+c>0

②若 a=b 時,則 y1<y2

③若 y1<0,y2>0,且 a+b<0,則 a>0

④若 b=2a﹣1,c=a﹣3,且 y1>0,則拋物線的頂點一定在第三象限上述四個判斷正確的有( )個.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】春季流感爆發(fā),有一人患了流感,經過兩輪傳染后共有人患了流感,

1)每輪傳染中平均一個人傳染了幾個人?

2)經過三輪傳染后共有多少人患了流感?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,某同學想測量旗桿的高度,他在某一時刻測得1長的竹竿豎直放置時影長1.5米,在同一時刻測量旗桿的影長時,因旗桿靠近一樓房,影子不全落在地面上,有一部分落在墻上,他測得落在地面上的影長為21,留在墻上的影高為2,求旗桿的高度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,拋物線C1:y=ax2+bx+1的頂點坐標為D(1,0)且經過點(0,1),將拋物線C1向右平移1個單位,向下平移1個單位得到拋物線C2,直線y=x+c,經過點Dy軸于點A,交拋物線C2于點B,拋物線C2的頂點為P.

(1)求拋物線C1的解析式;

(2)如圖2,連結AP,過點BBC⊥APAP的延長線于C,設點Q為拋物線上點P至點B之間的一動點,連結BQ并延長交AC于點F,

當點Q運動到什么位置時,SPBD×SBCF=8?

連接PQ并延長交BC于點E,試證明:FC(AC+EC)為定值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,拋物線y=ax2+2ax+c與y軸交于點C,與x軸交于A,B兩點,點A在點B左側.點B的坐標為(1,0),OC=3OB.

(1)求拋物線的解析式;

(2)當a>0時,如圖所示,若點D是第三象限方拋物線上的動點,設點D的橫坐標為m,三角形ADC的面積為S,求出S與m的函數關系式,并直接寫出自變量m的取值范圍;請問當m為何值時,S有最大值?最大值是多少.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某鋼鐵廠今年1月份鋼產量為5000噸,3月份上升到7200噸,設平均每月增長的百分率為,根據題意得方程(

A. 5000(1+x)+5000(1+x)2=7200 B. 5000(1+x2)=7200

C. 5000(1+x)2=7200 D. 5000+5000(1+x)2=7200

查看答案和解析>>

同步練習冊答案