【題目】如圖,某飛機(jī)于空中探測(cè)某座山的高度,在點(diǎn)A處飛機(jī)的飛行高度是AF=3700米,從飛機(jī)上觀測(cè)山頂目標(biāo)C的俯角是45°,飛機(jī)繼續(xù)以相同的高度飛行300米到B處,此時(shí)觀測(cè)目標(biāo)C的俯角是50°,求這座山的高度CD.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).
【答案】這座山的高度是1900米.
【解析】
設(shè)EC=x,則在RT△BCE中,可表示出BE,在Rt△ACE中,可表示出AE,繼而根據(jù)AB+BE=AE,可得出方程,解出即可得出答案.
解:設(shè)EC=x,
在Rt△BCE中,tan∠EBC=,
則BE==x,
在Rt△ACE中,tan∠EAC=,
則AE==x,
∵AB+BE=AE,
∴300+x=x,
解得:x=1800,
這座山的高度CD=DE﹣EC=3700﹣1800=1900(米).
答:這座山的高度是1900米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一個(gè)直角三角形紙片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分別是AC、AB邊上的點(diǎn),連接EF.
(1)如圖①,若將紙片ACB的一角沿EF折疊,折疊后點(diǎn)A落在AB邊上的點(diǎn)D處,且使S四邊形ECBF=3S△EDF,AE的長(zhǎng)為 ;
(2)如圖②,若將紙片ACB的一角沿EF折疊,折疊后點(diǎn)A落在BC邊上的點(diǎn)M處,且使MF∥CA.
①試判斷四邊形AEMF的形狀,并證明你的結(jié)論;
②求EF的長(zhǎng);
(3)如圖③,若FE的延長(zhǎng)線(xiàn)與BC的延長(zhǎng)線(xiàn)交于點(diǎn)N,CN=1,CE=,則= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解2012年全國(guó)中學(xué)生創(chuàng)新能力大賽中競(jìng)賽項(xiàng)目“知識(shí)產(chǎn)權(quán)”筆試情況,隨機(jī)抽查了部分參賽同學(xué)的成績(jī),整理并制作圖表如下:
分?jǐn)?shù)段 | 頻數(shù) | 頻率 |
60≤x<70 | 30 | 0.1 |
70≤x<80 | 90 | n |
80≤x<90 | m | 0.4 |
90≤x≤100 | 60 | 0.2 |
請(qǐng)根據(jù)以上圖表提供的信息,解答下列問(wèn)題:
(1)本次調(diào)查的樣本容量為 ;
(2)在表中:m= .n= ;
(3)補(bǔ)全頻數(shù)分布直方圖:
(4)參加比賽的小聰說(shuō),他的比賽成績(jī)是所有抽查同學(xué)成績(jī)的中位數(shù),據(jù)此推斷他的成績(jī)落在 分?jǐn)?shù)段內(nèi);
(5)如果比賽成績(jī)80分以上(含80分)為優(yōu)秀,那么你估計(jì)該競(jìng)賽項(xiàng)目的優(yōu)秀率大約是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC 中,∠C=90°,以BC為直徑的半圓交AB于點(diǎn)D,O是該半圓所在圓的圓心,E為線(xiàn)段AC上一點(diǎn),且ED=EA.
(1)求證:ED是⊙O的切線(xiàn);
(2)若,∠A=30°,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到△AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1在x軸上,再將△AB1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)到△A1B1C2的位置,點(diǎn)C2在x軸上,將△A1B1C2繞點(diǎn)C2順時(shí)針旋轉(zhuǎn)到△A2B2C2的位置,點(diǎn)A2在x軸上,依次進(jìn)行下去…若點(diǎn)A(,0),B(0,2),則點(diǎn)B2018的坐標(biāo)為( 。
A. (6048,0)B. (6054,0)C. (6048,2)D. (6054,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中,函數(shù)值y隨自變量x增大而減小的是( 。
A.y=2xB.
C.D.y=﹣x2+2x﹣1(x>1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在以線(xiàn)段AB為直徑的⊙O上取一點(diǎn),連接AC、BC.將△ABC沿AB翻折后得到△ABD.
(1)試說(shuō)明點(diǎn)D在⊙O上;
(2)在線(xiàn)段AD的延長(zhǎng)線(xiàn)上取一點(diǎn)E,使AB2=AC·AE.求證:BE為⊙O的切線(xiàn);
(3)在(2)的條件下,分別延長(zhǎng)線(xiàn)段AE、CB相交于點(diǎn)F,若BC=2,AC=4,求線(xiàn)段EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,直線(xiàn)與軸交于點(diǎn),與軸交于點(diǎn),拋物線(xiàn)經(jīng)過(guò),兩點(diǎn),與軸的另一交點(diǎn)為點(diǎn).
(1)求拋物線(xiàn)的函數(shù)表達(dá)式;
(2)點(diǎn)為直線(xiàn)下方拋物線(xiàn)上一動(dòng)點(diǎn).
①如圖2所示,直線(xiàn)交線(xiàn)段于點(diǎn),求的最小值;
② 如圖3所示,連接過(guò)點(diǎn)作于,是否存在點(diǎn),使得中的某個(gè)角恰好等于的2倍?若存在,求點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一個(gè)直角三角形紙片,放置在平面直角坐標(biāo)系中,點(diǎn),點(diǎn),點(diǎn)
(I)過(guò)邊上的動(dòng)點(diǎn) (點(diǎn)不與點(diǎn),重合)作交于點(diǎn),沿著折疊該紙片,點(diǎn)落在射線(xiàn)上的點(diǎn)處.
①如圖,當(dāng)為中點(diǎn)時(shí),求點(diǎn)的坐標(biāo);
②連接,當(dāng)為直角三角形時(shí),求點(diǎn)坐標(biāo):
(Ⅱ)是邊上的動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)重合),將沿所在的直線(xiàn)折疊,得到,連接,當(dāng)取得最小值時(shí),求點(diǎn)坐標(biāo)(直接寫(xiě)出結(jié)果即可).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com