【題目】將一個直角三角形紙片,放置在平面直角坐標系中,點,點,點
(I)過邊上的動點 (點不與點,重合)作交于點,沿著折疊該紙片,點落在射線上的點處.
①如圖,當為中點時,求點的坐標;
②連接,當為直角三角形時,求點坐標:
(Ⅱ)是邊上的動點(點不與點重合),將沿所在的直線折疊,得到,連接,當取得最小值時,求點坐標(直接寫出結(jié)果即可).
【答案】(I)①;②點坐標為或;(II)
【解析】
(I)①過點E做EH⊥OA ,交OA于點H,由D為OB中點結(jié)合DE∥OA,可得出DE為△BOA的中位線,再根據(jù)點A、B的坐標即可得出點E的坐標;
②根據(jù)折疊的性質(zhì)結(jié)合角的計算可得出∠AEF=60°≠90°,分∠AFE=90°和∠EAF=90°兩種情況考慮,利用含30度角的直角三角形以及勾股定理即可求出點E的坐標;
(II)根據(jù)三角形的三邊關(guān)系,找出當點A′在y軸上時,BA′取最小值,根據(jù)折疊的性質(zhì)可得出直線OP的解析式,再根據(jù)點A、B的坐標利用待定系數(shù)法求出直線AB的解析式,聯(lián)立兩直線解析式成方程組,解之即可得出點P的坐標.
(I)過點E做EH⊥OA ,交OA于點H,
①∵, ,
∴.
∵為中點,
∴D點的坐標為,
∴為的中位線,
∴點為線段的中點,
又∵,
∴EH為的中位線,
∴點H為線段OA的中點,
∴點H的坐標為,
∴點的坐標為.
②∵點,點,
∴,OB=3
∴,
∴∠B=30°,
由折疊可知:.
∴,
∴.
∵是直角三角形,
∴或
(i)當時,如圖1所示
.
在中,,
∴,,
∵,
∴,.
在中, ,.
∴,
∵,
∴,.
∵.
∴點的坐標為;
(ii)當時,如圖2所示.
∵,
∴,
∴.
在中, ,,
∴,
∵,
∴,.
在中, , ,
∴,
∵,
∴,
∵,
∴點的坐標為.
綜上所述:當為直角三角形時,點坐標為或.
(II)由折疊可知:,
∴,,
又∵,
∴當點在軸上時,取最小值,如圖3所示.
∵
∴
∴直線的解析式為
設(shè)直線的解析式為,
將、代入中,
,解得:,
∴直線的解忻式為.
聯(lián)立直線、的解析式成方程組,
,解得:,
∴.當取得最小值時,點坐標為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某飛機于空中探測某座山的高度,在點A處飛機的飛行高度是AF=3700米,從飛機上觀測山頂目標C的俯角是45°,飛機繼續(xù)以相同的高度飛行300米到B處,此時觀測目標C的俯角是50°,求這座山的高度CD.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB和拋物線的交點是A(0,-3),B(5,9),已知拋物線的頂點D的橫坐標是2.
(1)求拋物線的解析式及頂點坐標;
(2)在軸上是否存在一點C,與A,B組成等腰三角形?若存在,求出點C的坐標,若不存在,請說明理由;
(3)在直線AB的下方拋物線上找一點P,連接PA,PB使得△PAB的面積最大,并求出這個最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,AB=8,點C和點D是⊙O上關(guān)于直線AB對稱的兩個點,連接OC、AC,且∠BOC<90°,直線BC和直線AD相交于點E,過點C作直線CG與線段AB的延長線相交于點F,與直線AD相交于點G,且∠GAF=∠GCE
(1)求證:直線CG為⊙O的切線;
(2)若點H為線段OB上一點,連接CH,滿足CB=CH,
①△CBH∽△OBC
②求OH+HC的最大值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一個直角三角形紙片,放置在平面直角坐標系中,點,點,點
(I)過邊上的動點 (點不與點,重合)作交于點,沿著折疊該紙片,點落在射線上的點處.
①如圖,當為中點時,求點的坐標;
②連接,當為直角三角形時,求點坐標:
(Ⅱ)是邊上的動點(點不與點重合),將沿所在的直線折疊,得到,連接,當取得最小值時,求點坐標(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】課外閱讀是提高學生素養(yǎng)的重要途徑.某校為了解本校學生課外閱讀情況,對九年級學生進行隨機抽樣調(diào)查.如圖是根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計圖(不完整),請根據(jù)圖中提供的信息,解答下面的問題:
(1)本次抽樣調(diào)查的樣本容量是____ ____;
(2)在條形統(tǒng)計圖補中,計算出日人均閱讀時間在0.5~1小時的人數(shù)是____ ____,并將條形統(tǒng)計圖補充完整;
(3)在扇形統(tǒng)計圖中,計算出日人均閱讀時間在1~1.5小時對應(yīng)的圓心角度數(shù)____ ____度;
(4)根據(jù)本次抽樣調(diào)查,試估計該市15000名九年級學生中日人均閱讀時間在0.5~1.5小時的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于下列結(jié)論:
①二次函數(shù),當時,隨的增大而增大.
②關(guān)于的方程的解是,(、、均為常數(shù),),則方程的解是,.
③設(shè)二次函數(shù),當時,總有,當時,總有,那么的取值范圍是.
其中,正確結(jié)論的個數(shù)是( 。
A.0個B.1個C.2個D.3個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xoy中,點A (-4,-2),將點A向右平移6個單位長度,得到點B.
(1)若拋物線y=-x2+bx+c經(jīng)過點A,B,求此時拋物線的表達式;
(2)在(1)的條件下的拋物線頂點為C,點D是直線BC上一動點(不與B,C重合),是否存在點D,使△ABC和以點A,B,D構(gòu)成的三角形相似?若存在,請求出此時D的坐標;若不存在,請說明理由;
(3)若拋物線y=-x2+bx+c的頂點在直線y=x+2上移動,當拋物線與線段有且只有一個公共點時,求拋物線頂點橫坐標t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,我們定義:橫坐標與縱坐標均為整數(shù)的點為整點如圖,已知雙曲線經(jīng)過點,記雙曲線與兩坐標軸之間的部分為(不含雙曲線與坐標軸).
(1)求的值;
(2)求內(nèi)整點的個數(shù);
(3)設(shè)點在直線上,過點分別作平行于軸軸的直線,交雙曲線于點,記線段、雙曲線所圍成的區(qū)域為,若內(nèi)部(不包括邊界)不超過個整點,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com