【題目】如圖,已知A(4,0),B(3,3),以OA、AB為邊作OABC,則若一個(gè)反比例函數(shù)的圖象經(jīng)過C點(diǎn),則這個(gè)反比例函數(shù)的表達(dá)式為_____.
【答案】y=﹣.
【解析】
過B作BE⊥x軸,過C作CD⊥x軸,可得∠BEA=∠CDO=90°,由四邊形ABCO為平行四邊形,得到對(duì)邊平行且相等,利用兩直線平行得到一對(duì)同位角相等,利用AAS得到三角形ABE與三角形OCD全等,利用全等三角形對(duì)應(yīng)邊相等得到AE=OD,BE=CD,確定出C的坐標(biāo),利用待定系數(shù)法確定出反比例函數(shù)的解析式,即可得出答案.
過B作BE⊥x軸,過C作CD⊥x軸,可得∠BEA=∠CDO=90°,
∵四邊形ABCO為平行四邊形,
∴AB∥OC,AB=OC,
∴∠BAE=∠COD,
在△ABE和△OCD中,
∴△ABE≌△OCD(AAS),
∴BE=CD,AE=OD,
∵A(4,0),B(3,3),
∴OA=4,BE=OE=3,
∴AE=OA﹣OE=4﹣3=1,
∴OD=AE=1,CD=BE=3,
∴C(﹣1,3),
設(shè)過點(diǎn)C的反比例解析式為y=,
把C(﹣1,3)代入得:k=﹣3,
則反比例解析式為y=﹣.
故答案為:y=﹣
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),已知四邊形ABCD和一點(diǎn)O,求作四邊形A′B′C′D′,使它與四邊形ABCD關(guān)于點(diǎn)O對(duì)稱;如果把O點(diǎn)移至如圖(2)所示位置,又該怎么作圖呢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“低碳生活,綠色出行”,2017年1月,某公司向深圳市場(chǎng)新投放共享單車640輛.
(1)若1月份到4月份新投放單車數(shù)量的月平均增長(zhǎng)率相同,3月份新投放共享單車1000輛.請(qǐng)問該公司4月份在深圳市新投放共享單車多少輛?
(2)考慮到自行車市場(chǎng)需求不斷增加,某商城準(zhǔn)備用不超過70000元的資金再購(gòu)進(jìn)A,B兩種規(guī)格的自行車100輛,已知A型的進(jìn)價(jià)為500元/輛,售價(jià)為700元/輛,B型車進(jìn)價(jià)為1000元/輛,售價(jià)為1300元/輛。假設(shè)所進(jìn)車輛全部售完,為了使利潤(rùn)最大,該商城應(yīng)如何進(jìn)貨?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明畫了一個(gè)銳角,并作出了它的兩條高和,兩高相交于點(diǎn).小明說圖形中共有兩對(duì)相似三角形,他說的對(duì)嗎?請(qǐng)你判定一下,如果正確,就其中的一對(duì)進(jìn)行說理.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,要把破殘的圓片復(fù)制完整,已知弧上三點(diǎn)A、B、C.
(1)用尺規(guī)作圖法,找出弧BAC所在圓的圓心O;(保留作圖痕跡,不寫作法)
(2)設(shè)△ABC為等腰三角形,底邊BC=10 cm,腰AB=6 cm,求圓片的半徑R;(結(jié)果保留根號(hào))
(3)若在(2)題中的R滿足n<R<m(m、n為正整數(shù)),試估算m和n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 拋物線與 交于點(diǎn)A,過點(diǎn)A作軸的平行線,分別交兩條拋物線于點(diǎn)B、C.則以下結(jié)論:① 無論取何值,的值總是正數(shù);② ;③ 當(dāng)時(shí),;④ 當(dāng)>時(shí),0≤<1;⑤ 2AB=3AC.其中正確結(jié)論的編號(hào)是______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是ABCD的對(duì)角線,按以下步驟作圖:①分別以點(diǎn)B和點(diǎn)D為圓心,大于BD的長(zhǎng)為半徑作弧,兩弧相交于E,F兩點(diǎn);②作直線EF,分別交AD,BC于點(diǎn)M,N,連接BM,DN.若BD=8,MN=6,則ABCD的邊BC上的高為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C為線段AB上一點(diǎn),分別以AB、AC、CB為底作頂角為120°的等腰三角形,頂角頂點(diǎn)分別為D、E、F(點(diǎn)E、F在AB的同側(cè),點(diǎn)D在另一側(cè))
(1)如圖1,若點(diǎn)C是AB的中點(diǎn),則∠AED= ;
(2)如圖2,若點(diǎn)C不是AB的中點(diǎn)
①求證:△DEF為等邊三角形;
②連接CD,若∠ADC=90°,AB=3,請(qǐng)直接寫出EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,⊙E的半徑為5,點(diǎn)E(1,-4).
(1)求弦AB與弦CD的長(zhǎng);
(2)求點(diǎn)A,B坐標(biāo)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com