【題目】為了合理利用電力資源,緩解用電緊張狀況,我國電力部門出臺了使用“峰谷電”的政策及收費標準(見下表).

用電時間段

收費標準

峰電

08:00—22:00

0.56元/千瓦時

谷電

22:00—08:00

0.28元/千瓦時

已知王老師家4月份使用“峰谷電”95千瓦時,繳電費43.40元,問王老師家4月份“峰電”和“谷電”各用了多少千瓦時?設(shè)王老師家4月份“峰電”用了x千瓦時,“谷電”用了y千瓦時,根據(jù)題意,列方程組得_____

【答案】

【解析】

根據(jù)題中條件,列出方程,共用電95千瓦時,則可看成是用電總量,所花費的43.40元是總電費,應(yīng)用題中所給條件,找出等量關(guān)系.

解:設(shè)王老師家4月份“峰電”用了x千瓦時,“谷電”用了y千瓦時,

則有:0.56x+0.28(95-x)=43.40,
解得:x=60,則95-x=35.

即峰電用了60千瓦時,“谷電”用了35千瓦時.

根據(jù)圖表得方程組:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把一個直角三角形ACB(ACB=90°)繞著頂點B順時針旋轉(zhuǎn)60°,使得點C旋轉(zhuǎn)到AB邊上的一點D,點A旋轉(zhuǎn)到點E的位置.F,G分別是BD,BE上的點,BF=BG,延長CF與DG交于點H.

(1)求證:CF=DG;

(2)求出FHG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于實數(shù)a,我們規(guī)定:用符號[]表示不大于的最大整數(shù),稱[]a的根整數(shù),例如:[]=3,[]=3

1)仿照以上方法計算:[] =   [] =   

2)若[]=1,寫出滿足題意的x的整數(shù)值   

如果我們對a連續(xù)求根整數(shù),直到結(jié)果為1為止.例如:對10連續(xù)求根整數(shù)2 []=3[]=1,這時候結(jié)果為1

3)對100連續(xù)求根整數(shù),   次之后結(jié)果為1

4)只需進行3次連續(xù)求根整數(shù)運算后結(jié)果為1的所有正整數(shù)中,最大的是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABC中,AB=AC,點DBC中點,ANABC外角∠CAM的平分線,CEAN,垂足為點E.求證:四邊形ADCE為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是放在水平地面上的一把椅子的側(cè)面圖,椅子高為AC,椅面寬為BE,椅腳高為ED,且AC⊥BE,AC⊥CD,AC∥ED.從點A測得點D、E的俯角分別為64°和53°.已知ED=35cm,求椅子高AC約為多少?
(參考數(shù)據(jù):tan53°≈ ,sin53°≈ ,tan64°≈2,sin64°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場第一次用11000元購進某款拼裝機器人進行銷售,很快銷售一空,商家又用24000元第二次購進同款機器人,所購進數(shù)量是第一次的2倍,但單價貴了10元.

(1)求該商家第一次購進機器人多少個?

(2)若所有機器人都按相同的標價銷售,要求全部銷售完畢的利潤率不低于20%(不考慮其它因素),那么每個機器人的標價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有A,B兩種商品,買2件A商品和1件B商品用了90元,買3件A商品和2件B商品共用了160元.

(1)求A,B兩種商品每件多少元?

(2)如果小亮準備購買A,B兩種商品共10件,總費用不超過350元,且不低于300元,問有幾種購買方案,哪種方案費用最低?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,從①∠1=∠2;②∠C=∠D;③∠A=∠F三個條件中選出兩個作為已知條件,另一個作為結(jié)論所組成的命題中,正確命題的個數(shù)為( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)活動課上,某學(xué)習(xí)小組對有一內(nèi)角(∠BAD)為120°的平行四邊形ABCD,將一塊含60°的直角三角板如圖放置在平行四邊形ABCD所在平面內(nèi)旋轉(zhuǎn),且60°角的頂點始終與點C重合,較短的直角邊和斜邊所在的兩直線分別交線段AB,AD于點E,F(xiàn)(不包括線段的端點).
(1)初步嘗試
如圖1,若AD=AB,求證:①△BCE≌△ACF,②AE+AF=AC;
(2)類比發(fā)現(xiàn)
如圖2,若AD=2AB,過點C作CH⊥AD于點H,求證:AE=2FH;
(3)深入探究:在(2)的條件下,學(xué)習(xí)小組某成員探究發(fā)現(xiàn)AE+2AF= AC,試判斷結(jié)論是否正確,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案