【題目】如圖,四邊形ABCD為長方形,C點在x軸,A點在y軸上,D點坐標(biāo)是(0,0),B點坐標(biāo)是(3,4),長方形ABCD沿直線EF折疊,點A落在BC邊上的G處,E、F分別在AD、AB上,F(2,4).
(1)求G點坐標(biāo);
(2)△EFG的面積為 (直接填空);
(3)點N在x軸上,直線EF上是否存在點M,使以M、N、F、G為頂點的四邊形是平行四邊形?若存在,請直接寫出M點的縱坐標(biāo);若不存在,請說明理由.
【答案】(1)G點的坐標(biāo)為;(2);(3)
【解析】
(1)根據(jù)折疊性質(zhì)可知FG=AF=2,而FB=AB-AF=1,則在Rt△BFG中,利用勾股定理求出BG的長,從而得到CG的長,從而得到G點坐標(biāo);
(2)由三角函數(shù)求出∠BFG=60°,得出∠AFE=∠EFG=60°,由三角函數(shù)求出AE=AFtan∠AFE=2,代入三角形面積公式計算即可;
(3)因為M、N均為動點,只有FG已經(jīng)確定,所以可從此入手,按照FG為一邊、FG為對角線的思路,順序探究可能的平行四邊形的形狀.確定平行四邊形的位置與形狀之后,利用全等三角形求得M點的縱坐標(biāo),再利用直線解析式求出M點的橫坐標(biāo),從而求得M點的坐標(biāo).
解:(1)∵B點坐標(biāo)是(3,4),F(2,4),
∴AB=3,OA=BC=4,AF=2,
∴BF=AB-AF=1,
由折疊的性質(zhì)得:△EFA≌△EFG,GF=AF=2,
∵四邊形ABCD為矩形,
∴∠B=90°,
∴
∴
∴G點的坐標(biāo)為
(2)在Rt△BFG中,cos∠BFG=
∴∠BFG=60°,
∴∠AFE=∠EFG=60°,
∴AE=AFtan∠AFE=2tan60°=
∵△EFA的面積=
∴△EFG的面積=
故答案為:
(3)若以M、N、F、G為頂點的四邊形是平行四邊形,則可能存在以下情形:
①FG為平行四邊形的一邊,且N點在x軸正半軸上,如圖1所示.
過點作⊥x軸正半軸于點H,
∵
∴
又∵AB∥OQ
∴∠HQF=∠BFG
∴
又∵
在△和△GBF中,
∴
∴
由(2)得:
∴E點的坐標(biāo)為
設(shè)直線EF的解析式為y=kx+b,則
解得:
∴直線EF的解析式為
∵當(dāng)時, ,
∴點 的坐標(biāo)為
②FG為平行四邊形的一邊,且N點在x軸負(fù)半軸上,如圖2所示.
仿照與①相同的辦法,可求得
③FG為平行四邊形的對角線,如圖3所示.
過 作FB延長線的垂線,垂足為H
則
在△和△中,
∴
∴
∴的縱坐標(biāo)為
代入直線EF解析式,得到的橫坐標(biāo)為
∴
綜上所述,存在點M,使以M、N、F、G為頂點的四邊形是平行四邊形.
點M的坐標(biāo)為:
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,鐘表的分針勻速旋轉(zhuǎn)一周需要60分鐘,那么:
(1)它的旋轉(zhuǎn)中心是什么?
(2)分針旋轉(zhuǎn)一周,時針旋轉(zhuǎn)多少度?
(3)上午8點整,時針和分針的夾角是多少?8點半呢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在平面直角坐標(biāo)系中,點A在X軸的正半軸,OA=8 ,點B在第一象限,∠AOB=60°,AB⊥OB垂足為B, 點D、C分別在邊OB、OA上,且OD=AC=t,以OD、OC為邊作平行四邊形OCED,DE交直線AB為F,CE交直線AB為點G.
(1) 當(dāng)t=2時, 則E的坐標(biāo)為
(2) 若ΔDFC的面積為,求t的值。
(3) 當(dāng)D、 B 、G、 E四點為頂點的四邊形為平行四邊形時,在Y軸上存在點M,過點M作FC的平行線交直線OB為點N,若以M、 N、 F、 C為頂點的四邊形也是平行四邊形,則點M的坐標(biāo)為 (直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】倡導(dǎo)健康生活,推進(jìn)全民健身,某社區(qū)要購進(jìn)A,B兩種型號的健身器材若干套,A,B兩種型號健身器材的購買單價分別為每套310元,460元,且每種型號健身器材必須整套購買.
(1)若購買A,B兩種型號的健身器材共50套,且恰好支出20000元,求A,B兩種型號健身器材各購買多少套?
(2)若購買A,B兩種型號的健身器材共50套,且支出不超過18000元,求A種型號健身器材至少要購買多少套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:直線AB∥CD,點E. F分別是AB、CD上的點。
(1)如圖1,當(dāng)點P在AB、CD內(nèi)部時,試說明:∠EPF=∠AEP+∠CFP;
(2)如圖2,當(dāng)點P在AB上方時,∠EPF、∠AEP、∠CFP之間有怎樣的數(shù)量關(guān)系?并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A、B在反比例函數(shù)y=的圖象上,過點A、B作x軸的垂線,垂足分別是M、N,射線AB交x軸于點C,若OM=MN=NC,四邊形AMNB的面積是3,則k的值為( )
A.2 B.4 C.﹣2 D.﹣4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E是矩形ABCD的邊AB的中點,點F是邊CD上一點,連接ED,EF,ED平分∠AEF,過點D作DG⊥EF于點M,交BC于點G,連接GE,GF,若FG∥DE,則 的值是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,物理教師為同學(xué)們演示單擺運動,單擺左右擺動中,在OA的位置時俯角∠EOA=30°,在OB的位置時俯角∠FOB=60°,若OC⊥EF,點A比點B高7cm.
(1)求單擺的長度;
(2)求從點A擺動到點B經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖,點是的中點,,,平分,下列結(jié)論:
① ② ③ ④
四個結(jié)論中成立的是( )
A.①②④B.①②③C.②③④D.①③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com