【題目】如圖,已知鈍角

1)過鈍角頂點,交于點(使用直尺和圓規(guī),不寫作法,保留作圖痕跡);

2)若,,,求的長.

【答案】1)見解析;(210

【解析】

1)以B為圓心,任意長度為半徑作弧,交ACMN兩點;然后分別以MN為圓心,大于MN為半徑作弧,兩弧交于點E,連接BEAC于點D.由作圖可知:BD垂直平分MN,即BDAC

2)利用銳角三角函數(shù)即可求出BD,再利用銳角三角函數(shù)即可求出AB

解:(1)以B為圓心,任意長度為半徑作弧,交ACM、N兩點;然后分別以MN為圓心,大于MN為半徑作弧,兩弧交于點E,連接BEAC于點D.由作圖可知:BD垂直平分MN,即BDAC,如下圖所示,BD即為所求;

2)解:在中,

中,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明同學(xué)在綜合實踐活動中對本地的一座古塔進(jìn)行了測量.如圖,他在山坡坡腳P處測得古塔頂端M的仰角為60°,沿山坡向上走25m到達(dá)D處,測得古塔頂端M的仰角為30°.已知山坡坡度i34,即tanθ,請你幫助小明計算古塔的高度ME.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點A(m,﹣2).

(1)求反比例函數(shù)的解析式;

(2)觀察圖象,直接寫出正比例函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍;

(3)若雙曲線上點C(2,n)沿OA方向平移個單位長度得到點B,判斷四邊形OABC的形狀并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】工匠制作某種金屬工具要進(jìn)行材料煅燒和鍛造兩個工序,即需要將材料燒到800℃,然后停止煅燒進(jìn)行鍛造操作,經(jīng)過8min時,材料溫度降為600℃.煅燒時溫度y)與時間xmin)成一次函數(shù)關(guān)系;鍛造時,溫度y)與時間xmin)成反比例函數(shù)關(guān)系(如圖).已知該材料初始溫度是32℃

1)分別求出材料煅燒和鍛造時yx的函數(shù)關(guān)系式,并且寫出自變量x的取值范圍;

2)根據(jù)工藝要求,當(dāng)材料溫度低于480℃時,須停止操作.那么鍛造的操作時間有多長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,D、E分別是AB、AC的中點,連接CD,過EEFDCBC的延長線于F.

(1)證明:四邊形CDEF是平行四邊形;

(2)若四邊形CDEF的周長是25cm,AC的長為5cm,求線段AB的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC頂點的坐標(biāo)分別為A(﹣3,3),B(﹣5,2),C(﹣11).

1)以點C為位似中心,作出△ABC的位似圖形△A1B1C,使其位似比為12,且ABC位于點C的異側(cè),并表示出點A1的坐標(biāo).

2)作出△ABC繞點C順時針旋轉(zhuǎn)90°后的圖形△A2B2C

3)在(2)的條件下求出點B經(jīng)過的路徑長(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)過舉國上下抗擊新型冠狀病毒的斗爭,疫情得到了有效控制,國內(nèi)各大企業(yè)在29日后紛紛進(jìn)入復(fù)工狀態(tài).為了了解全國企業(yè)整體的復(fù)工情況,我們查找了截止到202031日全國部分省份的復(fù)工率,并對數(shù)據(jù)進(jìn)行整理、描述和分析.下面給出了一些信息:

a.截止3120時,全國已有11個省份工業(yè)企業(yè)復(fù)工率在90%以上,主要位于東南沿海地區(qū),位居前三的分別是貴州(100%)、浙江(99.8%)、江蘇(99%).

b.各省份復(fù)工率數(shù)據(jù)的頻數(shù)分布直方圖如圖1(數(shù)據(jù)分成6組,分別是40x≤50

50x≤60;60x≤70;70x≤80;80x≤9090x≤100):

c.如圖2,在b的基礎(chǔ)上,畫出扇形統(tǒng)計圖:

d.截止到202031日各省份的復(fù)工率在80x≤90這一組的數(shù)據(jù)是:

81.3

83.9

84

87.6

89.4

90

90

e.截止到202031日各省份的復(fù)工率的平均數(shù)、中位數(shù)、眾數(shù)如下:

日期

平均數(shù)

中位數(shù)

眾數(shù)

截止到202031

80.79

m

50,90

請解答以下問題:

1)依據(jù)題意,補全頻數(shù)分布直方圖;

2)扇形統(tǒng)計圖中50x≤60這組的圓心角度數(shù)是   度(精確到0.1).

3)中位數(shù)m的值是   

4)根據(jù)以上統(tǒng)計圖表簡述國內(nèi)企業(yè)截止31日的復(fù)工率分布特征.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y1=ax+b(a≠0)的圖象與反比例函數(shù)y2=(k≠0)的圖象交于A、B兩點,與x軸交于點C,過點AAHx軸于點H,點O是線段CH的中點,AC=4,cosACH=

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)在x軸上是否存在點P,使三角形PAC是等腰三角形?若存在,請求出P點坐標(biāo);不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案