【題目】如圖,已知RtABC,∠C90°,DBC的中點(diǎn),以AC為直徑的⊙OAB于點(diǎn)E

1)求證:DE是⊙O的切線;

2)若AEEB12,BC12,求AE的長.

【答案】(1)詳見解析;(2)

【解析】

1)連接OE、EC,根據(jù)已知條件易證∠1+3=∠2+4=90°,即可得∠OED90°,所以DE是⊙O的切線;(2)證明△BEC∽△BCA,根據(jù)相似三角形的性質(zhì)可得 ,即BC2BEBA,設(shè)AEx,則BE2x,BA3x,代入可得1222x3x,解得x2,即可得AE2

1)證明:連接OE、EC,

AC是⊙O的直徑,

∴∠AEC=∠BEC90°,

DBC的中點(diǎn),

EDDCBD

∴∠1=∠2,

OEOC,

∴∠3=∠4

∴∠1+3=∠2+4,

即∠OED=∠ACB

∵∠ACB90°,

∴∠OED90°,

DE是⊙O的切線;

2)由(1)知:∠BEC90°,

∵在RtBECRtBCA中,∠B=∠B,∠BEC=∠BCA,

∴△BEC∽△BCA,

,

BC2BEBA,

AEEB12,設(shè)AEx,則BE2x,BA3x,

BC12,

1222x3x,

解得:x2,

AE2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C是圓上一點(diǎn),點(diǎn)D是半圓的中點(diǎn),連接CDOB于點(diǎn)E,點(diǎn)FAB延長線上一點(diǎn),CFEF

1)求證:FC是⊙O的切線;

2)若CF5,求⊙O半徑的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市生物和地理會考的考試結(jié)果以等級形式呈現(xiàn),分A、B、C、D四個等級.某校八年級學(xué)生參加生物會考后,隨機(jī)抽取部分學(xué)生的生物成績進(jìn)行統(tǒng)計(jì),繪制成如下兩幅不完整的統(tǒng)計(jì)圖.

1)這次抽樣調(diào)查共抽取了 名學(xué)生的生物成績.扇形統(tǒng)計(jì)圖中,D等級所對應(yīng)的扇形圓心角度數(shù)為 °;

2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)若該校八年級有400名學(xué)生,估計(jì)這次考試有多少名學(xué)生的生物成績等級為D級?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,反比例函數(shù)在第一象限內(nèi)的圖象分別交,于點(diǎn)和點(diǎn),且的面積為

1)求直線的解析式;

2)求反比例函數(shù)解析式;

3)求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,BD為一條對角線,ADBC,AD2BC,∠ABD90°,EAD的中點(diǎn),連接BE

1)求證:四邊形BCDE為菱形;

2)連接AC,若AC平分∠BAD,BC2,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC

1)實(shí)踐與操作:

利用尺規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)的字母(保留作圖痕跡,不寫作法)

BC邊上的高AD

作△ABC的角平分線BE;

2)綜合與運(yùn)用;

若△ABC中,ABAC且∠CAB36°,

請根據(jù)作圖和已知寫出符合括號內(nèi)要求的正確結(jié)論;

結(jié)論1   ;(關(guān)于角)

結(jié)論2   ;(關(guān)于線段)

結(jié)論3   .(關(guān)于三角形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,點(diǎn)為射線上一動點(diǎn),將沿折疊,得到恰好落在射線上,則的長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市要進(jìn)一批雞蛋進(jìn)行銷售,有、兩家農(nóng)場可供貨.為了比較兩家提供的雞蛋單個大小,超市分別對這兩家農(nóng)場的雞蛋進(jìn)行抽樣檢測,通過分析數(shù)據(jù)確定雞蛋的供貨商.

1)下列抽樣方式比較合理的是哪一種?請簡述原因.

①分別從、兩家提供的一箱雞蛋中拿出最上面的兩層(共40枚)雞蛋,并分別稱出其中每一個雞蛋的質(zhì)量.

②分別從、兩家提供的一箱雞蛋中每一層隨機(jī)抽4枚(共40枚)雞蛋,并分別稱出其中每個雞蛋的質(zhì)量.

2)在用合理的方法抽出兩家提供的雞蛋各40枚后,分別稱出每個雞蛋的質(zhì)量(單位:),結(jié)果如表所示(數(shù)據(jù)包括左端點(diǎn)不包括右端點(diǎn)).

4547

4749

4951

5153

5355

農(nóng)場雞蛋

2

8

15

10

5

農(nóng)場雞蛋

4

6

12

14

4

①如果從這兩家農(nóng)場提供的雞蛋中隨機(jī)拿一個,分別估計(jì)兩家雞蛋質(zhì)量在(單位:)范圍內(nèi)的概率(數(shù)據(jù)包括左端點(diǎn)不包括右端點(diǎn));

②如果你是超市經(jīng)營者,試通過數(shù)據(jù)分析確定選擇哪家農(nóng)場提供的雞蛋.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,并完成相應(yīng)的任務(wù).

托勒密定理:

托勒密(Ptolemy)(公元90年~公元168年),希臘著名的天文學(xué)家,他的要著作《天文學(xué)大成》被后人稱為偉大的數(shù)學(xué)書,托勒密有時把它叫作《數(shù)學(xué)文集》,托勒密從書中摘出并加以完善,得到了著名的托勒密(Ptolemy)定理.

托勒密定理:

圓內(nèi)接四邊形中,兩條對角線的乘積等于兩組對邊乘積之和.

已知:如圖1,四邊形ABCD內(nèi)接于⊙O,

求證:ABCD+BCADACBD

下面是該結(jié)論的證明過程:

證明:如圖2,作∠BAE=∠CAD,交BD于點(diǎn)E

∴∠ABE=∠ACD

∴△ABE∽△ACD

ABCDACBE

∴∠ACB=∠ADE(依據(jù)1

∵∠BAE=∠CAD

∴∠BAE+EAC=∠CAD+EAC

即∠BAC=∠EAD

∴△ABC∽△AED(依據(jù)2

ADBCACED

ABCD+ADBCACBE+ED

ABCD+ADBCACBD

任務(wù):(1)上述證明過程中的依據(jù)1”、依據(jù)2”分別是指什么?

2)當(dāng)圓內(nèi)接四邊形ABCD是矩形時,托勒密定理就是我們非常熟知的一個定理:   

(請寫出)

3)如圖3,四邊形ABCD內(nèi)接于⊙OAB3,AD5,∠BAD60°,點(diǎn)C的中點(diǎn),求AC的長.

查看答案和解析>>

同步練習(xí)冊答案