【題目】閱讀并解決問(wèn)題.

對(duì)于形如x2+2ax+a2這樣的二次三項(xiàng)式,可以用公式法將它分解成(x+a2的形式.但對(duì)于二次三項(xiàng)式x2+2ax3a2,就不能直接運(yùn)用公式了.此時(shí),我們可以在二次三項(xiàng)式x2+2ax3a2中先加上一項(xiàng)a2,使它與x2+2ax的和成為一個(gè)完全平方式,再減去a2,整個(gè)式子的值不變,于是有:x2+2ax3a2=x2+2ax+a2)﹣a23a2=x+a2﹣(2a2=x+3a)(xa).像這樣,先添﹣適當(dāng)項(xiàng),使式中出現(xiàn)完全平方式,再減去這個(gè)項(xiàng),使整個(gè)式子的值不變的方法稱為配方法

1)利用配方法分解因式:a26a+8

2)若a+b=5ab=6,求:①a2+b2;②a4+b4的值.

3)已知x是實(shí)數(shù),當(dāng)x為何值時(shí),此多項(xiàng)式2x2的最小值是多少.

【答案】1)(a-2)(a-4);(213;97;(3x=0時(shí),2x2有最小值,即最小值為0.

【解析】

1)直接在多項(xiàng)式后加1再減1,可以組成完全平方式;

2)①加2ab再減2ab可以組成完全平方式;②在①得基礎(chǔ)上,加2a2b2再減2a2b2,可以組成完全,可以組成完全平方式;

3)根據(jù)非負(fù)數(shù)的非負(fù)性質(zhì)進(jìn)行求解.

解:(1a2-6a+8,

=a2-6a+9-1,

=a-32-1

=a-3-1)(a-3+1),

=a-2)(a-4);

2a2+b2

=a+b2-2ab,

=52-2×6

=13;

a4+b4,

=a2+b22-2a2b2

=132-2×62,

=97

3)因?yàn)?/span>x2 0,

當(dāng)x=0時(shí),2x2 0,即最小值為0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖ADABC的角平分線,DFAB,垂足為F,如圖DE=DG,ADGAED的面積分別為5038,則EDF的面積( 。

A.6B.12C.8D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,點(diǎn)PAC邊上的一點(diǎn),將線段AP繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)(點(diǎn)P對(duì)應(yīng)點(diǎn)P),當(dāng)AP旋轉(zhuǎn)至APAB時(shí),點(diǎn)B、P、P恰好在同一直線上,此時(shí)作PEAC于點(diǎn)E

1)求證:∠CBP=ABP

2)求證:AE=CP;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)任意四邊形四邊中點(diǎn)圍成的四邊形是__________

(2)對(duì)角線相等的四邊形四邊中點(diǎn)圍成的四邊形是__________;

(3)對(duì)角線垂直的四邊形四邊中點(diǎn)圍成的四邊形是__________;并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,ABC的頂點(diǎn)坐標(biāo)分別為A(﹣25),B(﹣43),C(﹣1,﹣1).

1)請(qǐng)畫出ABC關(guān)于x軸對(duì)稱的A1B1C1,并寫出點(diǎn)A1的坐標(biāo);

2)請(qǐng)畫出ABC關(guān)于y軸對(duì)稱的A2B2C2,并寫出點(diǎn)A2的坐標(biāo);

3)在邊AC上有一點(diǎn)Pa、b),直接寫出以上兩次圖形變換后的對(duì)稱點(diǎn)P1P2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,AD是高,BE是中線,CF是角平分線,CFAD于點(diǎn)G,交BE于點(diǎn)H,下面說(shuō)法中正確的序號(hào)是_____

①△ABE的面積等于△BCE的面積;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=x2+bx+c的圖象與x軸交于A(3,0),B(﹣1,0),與y軸交于點(diǎn)C.若點(diǎn)P,Q同時(shí)從A點(diǎn)出發(fā),都以每秒1個(gè)單位長(zhǎng)度的速度分別沿AB,AC邊運(yùn)動(dòng),其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).

(1)求該二次函數(shù)的解析式及點(diǎn)C的坐標(biāo);

(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到B點(diǎn)時(shí),點(diǎn)Q停止運(yùn)動(dòng),這時(shí),在x軸上是否存在點(diǎn)E,使得以A,E,Q為頂點(diǎn)的三角形為以AQ為腰的等腰三角形?若存在,請(qǐng)求出E點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

(3)在AC段的拋物線上有一點(diǎn)R到直線AC的距離最大,請(qǐng)直接寫出點(diǎn)R的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AC是矩形ABCD的對(duì)角線,過(guò)AC的中點(diǎn)OEF⊥AC,交BC于點(diǎn)E,交AD于點(diǎn)F,連接AECF

1)求證:四邊形AECF是菱形;

2)若AB=DCF=30°,求四邊形AECF的面積.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)B、E、C、F在一條直線上,AB=DF,AC=DE,A=D.

(1)求證:ACDE;

(2)BF=13,EC=5,求BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案