【題目】如圖,已知BC,DE相交于點O,給出以下三個判斷:①AB∥DE;②BC∥EF;③∠B=∠E,請你以其中兩個判斷作為題設(shè),另外一個判斷作為結(jié)論,寫出所有的命題,指出這些命題是真命題還是假命題,并選擇其中的一個真命題加以證明.

【答案】見解析.

【解析】

三個判斷任意兩個為條件,另一個為結(jié)論可寫三個命題,然后根據(jù)平行線的判定與性質(zhì)判斷這些命題的真假.

(1)AB∥DE,BC∥EF,則∠B=∠E,此命題為真命題.

(2)AB∥DE,∠B=∠E,則BC∥EF,此命題為真命題.

(3)∠B=∠E,BC∥EF,則AB∥DE,此命題為真命題.

以第一個命題為例證明如下:

∵AB∥DE,

∴∠B=∠DOC.

∵BC∥EF,

∴∠DOC=∠E.

∴∠B=∠E.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC的邊長為 1,CDAB 于點 D,E 為射線 CD 上一點,以BE為邊在 BE 左側(cè)作等邊△BEF,則DF的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,C=90°,AB=5cm,BC=3cm,若動點P從點C開始,按CAB的路徑運動,且速度為每秒2cm,設(shè)點P的運動時間為t秒.

1)則AC=______cm;

2)當BP平分ABC,求此時點P的運動時間t的值;

3)點P運動過程中,BCP能否成為等腰三角形?若能,求出t的值;若不能請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,AC=BC,ABC的高CD與角平分線AE相交點F,過點CCHAEG,交ABH.下列說法:①∠BCH=CAE;DF=EF;CE=BH;SABE=2SACE;CF=DF.正確的是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了豐富學(xué)生的課外活動,某校決定購買100個籃球和副羽毛球拍.經(jīng)調(diào)查發(fā)現(xiàn):甲、乙兩個體育用品商店以同樣的價格出售同種品牌的籃球和羽毛球拍.已知每個籃球比每副羽毛球拍貴25元,兩個籃球與三副羽毛球拍的費用正好相等.經(jīng)洽談,甲商店的優(yōu)惠方案是:每購買十個籃球,送一副羽毛球拍;乙商店的優(yōu)惠方案是:若購買籃球數(shù)超過80個,則購買羽毛球拍可打八折.

1)求每個籃球和每副羽毛球拍的價格分別是多少?

2)請用含的代數(shù)式分別表示出到甲商店和乙商店購買所花的費用;

3)請你決策:在哪家商店購買劃算?(直接寫出結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下面例題的解法,然后解答問題:

例:若多項式2x3-x2+m分解因式的結(jié)果中有因式2x+1,求實數(shù)m的值.

解:設(shè)2x3-x2+m=(2x+1)·A(A為整式).

2x3-x2+m=(2x+1)·A=0,則2x+1=0A=0.

2x+1=0,解得x=-.

x=-是方程2x3-x2+m=0的解. 2×(-)3-(-)2+m=0,即--+m=0. m=.

(1)若多項式x2+px-6分解因式的結(jié)果中有因式x-3,則實數(shù)p= ;

(2)若多項式x3+5x2+7x+q分解因式的結(jié)果中有因式x+1,求實數(shù)q的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從3,0,﹣1,﹣2,﹣3這五個數(shù)中,隨機抽取一個數(shù),作為函數(shù)y=(5﹣m2)x和關(guān)于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函數(shù)的圖象經(jīng)過第一、三象限,且方程有實數(shù)根的概率為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCDCE均是等邊三角形, B、C、E 在同一條直線上,AE BD交于點 O,AE CD交于點 G,AC BD交于點 F,連接 OC、FG,則下列結(jié)論要:AE=BD;AG=BF;FGBE;OC 平分BOE,其中結(jié)論正確的個數(shù)有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在學(xué)習(xí)三角形知識時,發(fā)現(xiàn)如下三個有趣的結(jié)論:在Rt△ABC中,∠A=90°,BD平分∠ABC,M為直線AC上一點,ME⊥BC,垂足為E,∠AME的平分線交直線AB于點F.

(1)如圖①,M為邊AC上一點,則BD、MF的位置關(guān)系是 ;

如圖②,M為邊AC反向延長線上一點,則BD、MF的位置關(guān)系是 ;

如圖③,M為邊AC延長線上一點,則BD、MF的位置關(guān)系是 ;

(2)請就圖①、圖②、或圖③中的一種情況,給出證明.

查看答案和解析>>

同步練習(xí)冊答案