當(dāng)-數(shù)學(xué)公式≤x≤數(shù)學(xué)公式時(shí),二次函數(shù)y=x2-2x-3的最小值為


  1. A.
    -4
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
B
分析:本題考查二次函數(shù)最。ù螅┲档那蠓ǎ⒁庠趚的取值范圍內(nèi)解答.
解答:解:由圖可知,當(dāng)x=時(shí),取得最小值,
y最小值=(2-2×-3=-
故選B
點(diǎn)評(píng):求二次函數(shù)的最大(。┲涤腥N方法,第一種可由圖象直接得出,第二種是配方法,第三種是公式法,常用的是后兩種方法,當(dāng)二次系數(shù)a的絕對(duì)值是較小的整數(shù)時(shí),用配方法較好,如y=-x2-2x+5,y=3x2-6x+1等用配方法求解比較簡(jiǎn)單.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、一次函數(shù)y=2x+3與二次函數(shù)y=ax2+bx+c的圖象交于A(m,5)和B(3,n)兩點(diǎn),且點(diǎn)B是拋物線的頂點(diǎn).
(1)求二次函數(shù)的表達(dá)式;
(2)在同一坐標(biāo)系中畫(huà)出兩個(gè)函數(shù)的圖象;
(3)從圖象上觀察,x為何值時(shí),一次函數(shù)與二次函數(shù)的值都隨x的增大而增大,當(dāng)x為何值時(shí),二次函數(shù)值大于一次函數(shù)值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線經(jīng)過(guò)點(diǎn)(0,-5),頂點(diǎn)坐標(biāo)(2,-9),
(1)求該拋物線的解析式;
(2)求該拋物線與x軸的交點(diǎn)坐標(biāo);
(3)寫(xiě)出當(dāng)x取何值時(shí),二次函數(shù)值大于零.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

一次函數(shù)y=2x+3與二次函數(shù)y=ax2+bx+c的圖象交于A(m,5)和B(3,n)兩點(diǎn),且點(diǎn)B是拋物線的頂點(diǎn).
(1)求二次函數(shù)的表達(dá)式;
(2)在同一坐標(biāo)系中畫(huà)出兩個(gè)函數(shù)的圖象;
(3)從圖象上觀察,x為何值時(shí),一次函數(shù)與二次函數(shù)的值都隨x的增大而增大,當(dāng)x為何值時(shí),二次函數(shù)值大于一次函數(shù)值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年浙江省嘉興市海寧市斜橋中學(xué)九年級(jí)(上)第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

一次函數(shù)y=2x+3與二次函數(shù)y=ax2+bx+c的圖象交于A(m,5)和B(3,n)兩點(diǎn),且點(diǎn)B是拋物線的頂點(diǎn).
(1)求二次函數(shù)的表達(dá)式;
(2)在同一坐標(biāo)系中畫(huà)出兩個(gè)函數(shù)的圖象;
(3)從圖象上觀察,x為何值時(shí),一次函數(shù)與二次函數(shù)的值都隨x的增大而增大,當(dāng)x為何值時(shí),二次函數(shù)值大于一次函數(shù)值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年北京市西城區(qū)(北區(qū))九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀下面的材料:

小明在學(xué)習(xí)中遇到這樣一個(gè)問(wèn)題:若1≤xm,求二次函數(shù)的最大值.他畫(huà)圖研究后發(fā)現(xiàn),時(shí)的函數(shù)值相等,于是他認(rèn)為需要對(duì)進(jìn)行分類(lèi)討論.

他的解答過(guò)程如下:

∵二次函數(shù)的對(duì)稱(chēng)軸為直線,

∴由對(duì)稱(chēng)性可知,時(shí)的函數(shù)值相等.

∴若1≤m<5,則時(shí),的最大值為2;

m≥5,則時(shí),的最大值為

請(qǐng)你參考小明的思路,解答下列問(wèn)題:

(1)當(dāng)x≤4時(shí),二次函數(shù)的最大值為_(kāi)______;

(2)若px≤2,求二次函數(shù)的最大值;

(3)若txt+2時(shí),二次函數(shù)的最大值為31,則的值為_(kāi)______.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案