【題目】興發(fā)服裝店老板用4500元購進一批某款T恤衫,由于深受顧客喜愛,很快售完,老板又用4950元購進第二批該款式T恤衫,所購數(shù)量與第一批相同,但每件進價比第一批多了9元.

1)第一批該款式T恤衫每件進價是多少元?

2)老板以每件120元的價格銷售該款式T恤衫,當?shù)诙?/span>T恤衫售出時,出現(xiàn)了滯銷,于是決定降價促銷,若要使第二批的銷售利潤不低于650元,剩余的T恤衫每件售價至少要多少元?(利潤=售價進價)

【答案】1)第一批T恤衫每件的進價是90元;(2)剩余的T恤衫每件售價至少要80.

【解析】

1)設(shè)第一批T恤衫每件進價是x元,則第二批每件進價是(x+9)元,再根據(jù)等量關(guān)系:第二批進的件數(shù)=第一批進的件數(shù)可得方程;

2)設(shè)剩余的T恤衫每件售價y元,由利潤=售價﹣進價,根據(jù)第二批的銷售利潤不低于650元,可列不等式求解.

解:(1)設(shè)第一批T恤衫每件進價是x元,由題意,得

解得x=90

經(jīng)檢驗x=90是分式方程的解,符合題意.

答:第一批T恤衫每件的進價是90.

2)設(shè)剩余的T恤衫每件售價y元.

由(1)知,第二批購進=50件.

由題意,得120×50×+y×50×4950≥650

解得y≥80.

答:剩余的T恤衫每件售價至少要80.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】學校在八年級新生中舉行了全員參加的數(shù)學應(yīng)用能力大賽,試卷題目共10題,每題10.現(xiàn)分別從三個班中各隨機取10名同學的成績(單位:分),收集數(shù)據(jù)如下:

1班:90,7080,80,80,80,80,90,80100;

2班:70,8080,80,60,90,90,90100,90

3班:90,60,70,8080,80,80,90100100.

整理數(shù)據(jù):

人數(shù)

班級

60分人數(shù)

70分人數(shù)

80分人數(shù)

90分人數(shù)

100分人數(shù)

1

0

1

6

2

1

2

1

1

3

1

3

1

1

4

2

2

平均數(shù)

中位數(shù)

眾數(shù)

1

83

80

80

2

83

3

80

80

分析數(shù)據(jù):

根據(jù)以上信息回答下列問題:

1)請直接寫出表格中,,,的值;

2)比較這三組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)和眾數(shù),你認為哪個班的成績比較好?請說明理由(寫兩條支持你結(jié)論的理由).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A的坐標為(﹣15),點B的坐標為(﹣3,1).

1)在平面直角坐標系中作線段AB關(guān)于y軸對稱的線段A1B1AA1,BB1對應(yīng));

2)求AA1B1的面積;

3)在y軸上存在一點P,使PA+PB的值最小,則點P的坐標為________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】操作與證明:如圖1,把一個含45°角的直角三角板ECF和一個正方形ABCD擺放在一起,使三角板的直角頂點和正方形的頂點C重合,點E、F分別在正方形的邊CB、CD上,連接AF.取AF中點M,EF的中點N,連接MD、MN.

(1)連接AE,求證:AEF是等腰三角形;

猜想與發(fā)現(xiàn):

(2)在(1)的條件下,請判斷MD、MN的數(shù)量關(guān)系和位置關(guān)系,得出結(jié)論.

結(jié)論1:DM、MN的數(shù)量關(guān)系是

結(jié)論2:DM、MN的位置關(guān)系是 ;

拓展與探究:

(3)如圖2,將圖1中的直角三角板ECF繞點C順時針旋轉(zhuǎn)180°,其他條件不變,則(2)中的兩個結(jié)論還成立嗎?若成立,請加以證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知BC5AB1,ABBC,射線CMBC,動點P在線段BC上(不與點B,C重合),過點PDPAP交射線CM于點D,連接AD

1)如圖1,若BP4,判斷ADP的形狀,并加以證明.

2)如圖2,若BP1,作點C關(guān)于直線DP的對稱點C,連接AC

依題意補全圖2;

請直接寫出線段AC的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:①aa2_____;

_____;

a0_____a≠0);

_____

⑤﹣6a÷3a_____;

_____;

_____;

_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】新定義:如圖(1)和圖(2)中,點P是平面內(nèi)一點,如果2,稱點P是線段AB的強弱點.

1)如圖2,在RtAPB中,∠APB90°,∠A30°,問:點B是否是線段AP的強弱點?請說明理由;

2)如圖3,在RtABC中,∠ACB90°,B是線段AC的強弱點(BABC),BDRtABC的角平分線,求證:點D是線段AC上的強弱點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OABOAOB=10,∠AOB=80°,以點O為圓心,6為半徑的優(yōu)弧弧MN分別交OA、OB于點M,N

(1)P在右半弧上(∠BOP是銳角),OP繞點O逆時針旋轉(zhuǎn)80°,求證APBP;

(2)T在左半弧上,AT與弧相切,求點TOA的距離;

(3)設(shè)點Q在優(yōu)弧弧MNAOQ的面積最大時,直接寫出BOQ的度數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】溫州甌柑,聲名遠播.某經(jīng)銷商欲將倉庫的120噸甌柑運往A,B兩地銷售.運往AB兩地的甌柑()和每噸的運費如下表.設(shè)倉庫運往A地的甌柑為x噸,且x整數(shù)

甌柑()

運費(/)

A

x

20

B

30

1)設(shè)倉庫運往A,B兩地的總運費為y元.

①將表格補充完整.

②求y關(guān)于x的函數(shù)表達式.

2)若倉庫運往A地的費用不超過運往A,B兩地費用的,求總運費的最小值.

查看答案和解析>>

同步練習冊答案