【題目】已知,在中,,,為直線上一動(dòng)點(diǎn)(不與點(diǎn),重合),以為邊作正方形,連接.
(1)如圖1,當(dāng)點(diǎn)在線段上時(shí),請(qǐng)直接寫(xiě)出:,,三條線段之間的數(shù)量關(guān)系為_(kāi)_______.
(2)如圖2,當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),其他條件不變.(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)你寫(xiě)出正確的結(jié)論,并給出證明.
(3)如圖3,當(dāng)點(diǎn)在線段的反向延長(zhǎng)線上時(shí),且點(diǎn),分別在直線的兩側(cè),其他條件不變.請(qǐng)直接寫(xiě)出:,,三條線段之間的數(shù)量關(guān)系______________.
【答案】(1);(2)不成立,正確的結(jié)論:,見(jiàn)解析:(3).
【解析】
(1)三角形ABC是等腰直角三角形,利用SAS即可證明△BAD≌△CAF,從而證得CF=BD,據(jù)此即可證得;
(2)同(1)相同,利用SAS即可證得△BAD≌△CAF,從而證得BD=CF,即可得到CF-CD=BC;
(3)首先證明△BAD≌△CAF,△FCD是直角三角形,然后根據(jù)條件即可求得.
解:(1)∵∠BAC=90°,∠ABC=45°,
∴∠ACB=∠ABC=45°,
∴AB=AC,
∵四邊形ADEF是正方形,
∴AD=AF,∠DAF=90°,
∵∠BAD=90°-∠DAC,∠CAF=90°-∠DAC,
∴∠BAD=∠CAF,
則在△BAD和△CAF中,
,
∴△BAD≌△CAF(SAS),
∴BD=CF,
∵BD+CD=BC,
∴CF+CD=BC;
(2)不成立
,理由如下:如圖2
∵,,
∴,
∴.
∵四邊形為正方形,
∴,,
∵,,
∴,
∴,
∴,
∵,
∴,
∴.
(3)根據(jù)①②可知△BAD≌△CAF(SAS),
故BD=CF,DC=BD+BC,
故BC=CD-CF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD,CB=CD,E是CD上一點(diǎn),BE交AC于點(diǎn)F,連接DF.
(1)求證:∠BAC=∠DAC,∠AFD=∠CFE;
(2)若AB∥CD,試證明四邊形ABCD是菱形;
(3)在(2)的條件下,試確定E點(diǎn)的位置,使∠EFD=∠BCD,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,∠AOC=α,∠BOC=β,若OM平分∠AOC,ON平分∠BOC,則∠MON= (用含α、β的式子表示);
(2)如圖2,若將∠BOC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)30°后得到∠EOD,OM平分∠AOD,ON平分∠COE,求∠MON的度數(shù)(用含α、β的式子表示);
(3)若∠BOC旋轉(zhuǎn)90°至圖3的位置,其他條件不變,則∠MON的度數(shù)是 (用含α、β的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)軸上,點(diǎn)O為原點(diǎn),點(diǎn)A對(duì)應(yīng)的數(shù)為9,點(diǎn)B對(duì)應(yīng)的數(shù)為b,點(diǎn)C在點(diǎn)B右側(cè),長(zhǎng)度為2個(gè)單位的線段BC在數(shù)軸上移動(dòng).
(1)如圖,當(dāng)線段BC在O、A兩點(diǎn)之間移動(dòng)到某一位置時(shí),恰好滿(mǎn)足線段AC=OB,求此時(shí)b的值;
(2)當(dāng)線段BC在數(shù)軸上沿射線AO方向移動(dòng)的過(guò)程中,若存在AC﹣OB=AB,求此時(shí)滿(mǎn)足條件的b的值;
(3)當(dāng)線段BC在數(shù)軸上移動(dòng)時(shí),滿(mǎn)足關(guān)系式|AC﹣OB|=|AB﹣OC|,則此時(shí)b的取值范圍是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過(guò)A(2,0),B(0,﹣6)兩點(diǎn),
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)的對(duì)稱(chēng)軸與x軸交于點(diǎn)C,連接BA,BC,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“弘揚(yáng)柳鄉(xiāng)工匠精神,共筑鄉(xiāng)村振興之夢(mèng)”第三屆柳編文化節(jié)暨首屆“襄陽(yáng)人游襄州”啟動(dòng)儀式在浩然廣場(chǎng)舉行。為了迎接此次盛會(huì),某工藝品廠柳編車(chē)間組織名工人趕制一批柳編工藝品,為了解每名工人的日均生產(chǎn)能力,隨機(jī)調(diào)查了某天每個(gè)工人的生產(chǎn)件數(shù),獲得數(shù)據(jù)如下表:
則這一天名工人生產(chǎn)件數(shù)的眾數(shù)和中位數(shù)分別是( )
A. 件、件B. 件、件C. 件、件D. 件、件
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩形,為邊上一點(diǎn),,點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位的速度沿著邊向終點(diǎn)運(yùn)動(dòng),連接,設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為秒,則當(dāng)的值為__________時(shí),是以為腰的等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正常情況下,某出租車(chē)司機(jī)每天駕車(chē)行駛小時(shí),且平均速度為千米時(shí)。已知他在A日比正常情況少行駛2小時(shí),平均速度比正常情況慢5千米/時(shí),他在B日比正常情況多行駛2小時(shí),平均速度比正常情況快5千米/時(shí),
(1)問(wèn)A日出租車(chē)司機(jī)比正常情況少行駛多少千米?(用含,的代數(shù)式表示)
(2)已知A日出租車(chē)司機(jī)比正常情況少行駛120千米,求B日出租車(chē)司機(jī)比正常情況多行駛多少千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形的對(duì)角線相交于點(diǎn),且,那么下列條件不能判斷四邊形為平行四邊形的是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com