【題目】化簡求值:
(1),其中;
(2)若,且,求的值。
【答案】(1);(2)3
【解析】(1)先算乘法,再合并同類項,最后代入求出即可;
(2)根據(jù)(x+2)(y+2)=3即可求得xy的值,根據(jù)x+y=1兩邊同時平方即可求得x2+y2,代入即可求得所求的式子的值.
(1)(x+2)2+(2x+1)(2x-1)-4x(x+1)
=x2+4x+4+4x2-1-4x2-4x
=x2+3,
當x=-2時,原式=4+3=7.
(2)∵x+y=1,
∴x2+y2+2xy=1,
∴x2+y2=1-2xy,
∵(x+2)(y+2)=3,
∴xy+(x+y)+4=3,
∴xy+1+4=3,
∴xy=-2,
∴x2+xy+y2=1-2xy+xy=1-xy=1-(-2)=3.
科目:初中數(shù)學 來源: 題型:
【題目】八(2)班組織了一次經(jīng)典誦讀比賽,甲、乙兩隊各10人的比賽成績?nèi)缦卤?10分制):
甲 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲隊成績的中位數(shù)是 分,乙隊成績的眾數(shù)是 分;
(2)計算乙隊的平均成績和方差;
(3)已知甲隊成績的方差是1.4,則成績較為整齊的是 隊.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用四個長為m,寬為n的相同長方形按如圖方式拼成一個正方形.
(1).請用兩種不同的方法表示圖中陰影部分的面積.
方法①: ;
方法②: .
(2).由 (1)可得出2, ,4mn這三個代數(shù)式之間的一個等量關(guān)系為: .
(3)利用(2)中得到的公式解決問題:已知2a+b=6,ab=4,試求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場購進一種每件價格為100元的新商品,在商場試銷發(fā)現(xiàn):銷售單價x(元/件)與每天銷售量y(件)之間滿足如圖所示的關(guān)系:
(1)求出y與x之間的函數(shù)關(guān)系式;
(2)寫出每天的利潤W與銷售單價x之間的函數(shù)關(guān)系式;若你是商場負責人,會將售價定為多少,來保證每天獲得的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了鼓勵居民節(jié)約用水,某市自來水公司對每戶月用水量進行計費,每戶每月用水量在規(guī)定噸數(shù)以下的收費標準相同;規(guī)定噸數(shù)以上的超過部分收費標準相同,以下是小明家月份用水量和交費情況:
月份 | |||||
用水量(噸) | |||||
費用(元) |
根據(jù)表格中提供的信息,回答以下問題:
求出規(guī)定噸數(shù)和兩種收費標準;
若小明家月份用水噸,則應繳多少元?
若小明家月份繳水費元,則月份用水多少噸?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,O為正方形對角線的交點,BE平分∠DBC,交DC于點E,延長BC到點F,使CF=CE,連結(jié)DF,交BE的延長線于點G,連結(jié)OG.
(1)求證:△BCE≌△DCF.
(2)判斷OG與BF有什么關(guān)系,證明你的結(jié)論.
(3)若DF2=8-4,求正方形ABCD的面積?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某廠倉庫儲存了部分原料,按原計劃每時消耗2 t,可用60 h.由于技術(shù)革新,實際生產(chǎn)能力有所提高,即每時消耗的原料量大于計劃消耗的原料量.設現(xiàn)在每時消耗原料x(單位:t),庫存的原料可使用的時間為y(單位:h).
(1)寫出y關(guān)于x的函數(shù)解析式,并求出自變量的取值范圍;
(2)若恰好經(jīng)過24 h才有新的原料進廠,為了使機器不停止運轉(zhuǎn),則x應控制在什么范圍內(nèi)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com