【題目】“保護好環(huán)境,拒絕冒黑煙”荊州市公交公司將淘汰一條線路上“冒黑煙”較嚴重的公交車,計劃購買型和型兩種環(huán)保節(jié)能公交車輛,若購買型公交車輛,型公交車輛,共需萬元,若購買型公交車輛,型公交車輛,共需萬元.

1)求購買購買型和型公交車每輛多少錢?

2)預(yù)計在該線路上型和型公交車每輛年均載客量分別為萬人次和萬人次,若該公司購買型和型公交車的總費用不超過萬元,且確保這輛公交車在該線路上的年平均載客總和不少于萬人次,則該公司有哪幾種購車方案?

3)在(2)的條件下,哪種購車方案總費用最少?最少費用為多少?

【答案】1A型公交車100萬元/輛,B型公交車150元/輛;(2)三種方案:①購買A型公交車6輛,則B型公交車4輛;②購買A型公交車7輛,則B型公交車3輛;③購買A型公交車8輛,則B型公交車2輛;(3)購買A型公交車8輛,則B型公交車2輛費用最少,最少總費用為1100萬元.

【解析】

1)設(shè)購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,根據(jù)“A型公交車1輛,B型公交車2輛,共需400萬元;A型公交車2輛,B型公交車1輛,共需350萬元列出方程組解決問題;

2)設(shè)購買A型公交車m輛,則B型公交車(10m)輛,由購買A型和B型公交車的總費用不超過1200萬元“10輛公交車在該線路的年均載客總和不少于680萬人次列出不等式組探討得出答案即可;

3)分別求出各種購車方案總費用,再根據(jù)總費用作出判斷.

1)設(shè)購買A型公交車x萬元/輛,B型公交車y/輛,

由題意,得

解得,

答:A型公交車100萬元/輛,B型公交車150/輛;

2)設(shè)A型公交車m輛,則B型公交車(10m)輛,

由題意,得

解①,得m≥6;

解②,得m≤8;

解得6≤m≤8

所以m=6,7,8,

則(10m)=4,3,2

三種方案:①購買A型公交車6輛,則B型公交車4輛;②購買A型公交車7輛,則B型公交車3輛;③購買A型公交車8輛,則B型公交車2輛;

3)①購買A型公交車6輛,則B型公交車4輛:100×6150×41200萬元;

②購買A型公交車7輛,則B型公交車3輛:100×7150×31150萬元;

③購買A型公交車8輛,則B型公交車2輛:100×8150×21100萬元;

故購買A型公交車8輛,則B型公交車2輛費用最少,最少總費用為1100萬元.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分12分)如圖,Rt中, , ,點為斜邊的中點,點為邊上的一個動點.連結(jié),過點的垂線與邊交于點,以為鄰邊作矩形

1)如圖1,當,點在邊上時,求DEEF的長;

2)如圖2,若,設(shè)矩形的面積為,求y關(guān)于的函數(shù)表達式;

3)若,且點恰好落在Rt的邊上,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,RtABC的三個頂點分別是A(-3,2),B(0,4),C(0,2).

(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△A1B1C;平移△ABC,若點A的對應(yīng)點A2的坐標為(0,-4),畫出平移后對應(yīng)的△A2B2C2;

(2)若將△A1B1C繞某一點旋轉(zhuǎn)可以得到△A2B2C2,請直接寫出旋轉(zhuǎn)中心的坐標;

(3)x軸上有一點P,使得PA+PB的值最小,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店進行店慶活動,決定購進甲、乙兩種紀念品,若購進甲種紀念品1,乙種紀念品2,需要160購進甲種紀念品2,乙種紀念品3,需要280.

(1)購進甲乙兩種紀念品每件各需要多少元?

(2)該商場決定購進甲乙兩種紀念品100,并且考慮市場需求和資金周轉(zhuǎn)用于購買這些紀念品的資金不少于6300,同時又不能超過6430則該商場共有幾種進貨方案?

(3)若銷售每件甲種紀念品可獲利30,每件乙種紀念品可獲利12在第(2)問中的各種進貨方案中,哪種方案獲利最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)問題發(fā)現(xiàn)

如圖1,△ABC△ADE均為等邊三角形,點D在邊BC上,連接CE.請?zhí)羁眨?/span>

①∠ACE的度數(shù)為   ;

線段AC、CD、CE之間的數(shù)量關(guān)系為   

(2)拓展探究

如圖2,△ABC△ADE均為等腰直角三角形,∠BAC=∠DAE=90°,點D在邊BC上,連接CE.請判斷∠ACE的度數(shù)及線段AC、CD、CE之間的數(shù)量關(guān)系,并說明理由.

(3)解決問題

如圖3,在四邊形ABCD中,∠BAD=∠BCD=90°,AB=AD=2,CD=1,ACBD交于點E,請直接寫出線段AC的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠C=90°AD是∠BAC的平分線,DEABE,FAC上,且BD=DF

1)求證:CF=EB;

2)試判斷ABAF,EB之間存在的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在等腰△ABC中,ADBC交直線BC于點D,若AD=BC,則△ABC的頂角的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校在校運會之前想了解九年級女生一分鐘仰臥起坐得分情況(滿分為7分),在九年級500名女生中隨機抽出60名女生進行一次抽樣摸底測試所得數(shù)據(jù)如下表:

1)從表中看出所抽的學生所得的分數(shù)數(shù)據(jù)的眾數(shù)是______

A.40% B.7 C.6.5 D.5%

2)請將下面統(tǒng)計圖補充完整.

3)根據(jù)上述抽查,請估計該?荚嚪謹(shù)不低于6分的人數(shù)會有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,已知AB=24,BC=12,點E沿BC邊從點B開始向點C以每秒2個單位長度的速度運動;點F沿CD邊從點C開始向點D以每秒4個單位長度的速度運動,如果E、F同時出發(fā),用t(0≤t≤6)秒表示運動的時間,當t為何值時,以點E、C、F為頂點的三角形與△ACD相似?

查看答案和解析>>

同步練習冊答案