【題目】如圖,已知E、FABCD對角線AC上的兩點,且BEAC,DFAC.

(1)請寫出圖中全等三角形(不再添加輔助線).

(2)求證:△ABE≌△CDF

【答案】(1)詳見解析;(2)詳見解析.

【解析】

1)根據(jù)全等三角形的判定定理SSS(三條邊分別對應(yīng)相等的兩個三角形全等),SAS(兩邊及其夾角分別對應(yīng)相等的兩個三角形全等)判定圖中的全等三角形;

2)根據(jù)平行四邊形的性質(zhì)得到AB=CD,ABCD,推出∠BAE=FCD,根據(jù)垂直的定義得到∠AEB=CFD=90°,根據(jù)AAS(兩角及其中一個角的對邊對應(yīng)相等的兩個三角形全等)即可得到答案.

解:(1)①△ABC≌△CDASSS);②△BCE≌△DAFSAS);③△ABE≌△CDFSAS);

2)∵四邊形ABCD是平行四邊形,

AB=CD,ABCD,

∴∠BAE=FCD,

又∵BEAC,DFAC,

∴∠AEB=CFD=90°,

∴△ABE≌△CDFAAS).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,購買一種蘋果,所付款金額y(元)與購買量x(千克)之間的函數(shù)圖象由線段OA和射線AB組成,則一次購買5千克這種蘋果比分五次購買1千克這種蘋果可節(jié)。 )元.

A.6
B.8
C.9
D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)實驗課上,王老師讓大家用矩形紙片折出菱形.小華同學(xué)的操作步驟是:

(1)如圖①,將矩形ABCD沿著對角線BD折疊;

(2)如圖②,將圖①中的△A’BF沿BF折疊得到△A’’BF;

(3)如圖③,將圖②中的△CDF沿DF折疊得到△C’DF;

(4)將圖③展開得到圖④,其中BD、BE、DF為折疊過程中產(chǎn)生的折痕.

試解答下列問題:

(1)證明圖④中的四邊形BEDF為菱形;

(2)在圖④中,若BC=8,CD=4,求菱形BEDF的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】南京某中學(xué)為了迎接世乒賽,在九年級舉行了乒乓球知識競賽,從全年級600名學(xué)生的成績中隨機(jī)抽選了100名學(xué)生的成績,根據(jù)測試成績繪制成以下不完整的頻數(shù)分布表和頻數(shù)分布直方圖:

請結(jié)合圖表完成下列各題:

1)求表中a的值:

2)請把頻數(shù)分布直方圖補(bǔ)充完整:

3)若測試成績不低于90分的同學(xué)可以獲得世乒賽吉祥物乒寶,請你估計該校九年級有多少位同學(xué)可以獲得乒寶

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABCD中,ABC、ADC的平分線分別交ADBC于點E、F

1)求證:四邊形EBFD是平行四邊形;

2)如圖2,小明在完成(1)的證明后繼續(xù)進(jìn)行了探索.連接AF、CE,分別交BE、FD于點G、H,得到四邊形EGFH.此時,他猜想四邊形EGFH是平行四邊形,請在框圖(圖3)中補(bǔ)全他的證明思路,再在答題紙上寫出規(guī)范的證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,PQ分別為AB、BC邊上的動點,點P從點A開始沿AB方向運動,且速度為每秒1cm,點Q從點B開始B→C方向運動,且速度為每秒2cm,它們同時出發(fā);設(shè)出發(fā)的時間為t秒.

1)出發(fā)2秒后,求PQ的長;

2)從出發(fā)幾秒鐘后,△PQB能形成等腰三角形?

3)在運動過程中,直線PQ能否把原三角形周長分成相等的兩部分?若能夠,請求出運動時間;若不能夠,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題一:如圖①,已知AC160km,甲,乙兩人分別從相距30kmA,B兩地同時出發(fā)到C地.若甲的速度為80km/h,乙的速度為60km/h,設(shè)乙行駛時間為xh),兩車之間距離為ykm).

1)當(dāng)甲追上乙時,x   

2)請用x的代數(shù)式表示y

問題二:如圖②,若將上述線段AC彎曲后視作鐘表外圍的一部分,線段AB正好對應(yīng)鐘表上的弧AB1小時的間隔),易知∠AOB30°.

3)分針OD指向圓周上的點的速度為每分鐘轉(zhuǎn)動   km,時針OE指向圓周上的點的速度為每分鐘轉(zhuǎn)動   °;

4)若從200起計時,求幾分鐘后分針與時針第一次重合?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)x,y都是實數(shù),且y=++8,求5x+13y+6的值;

(2)已知△ABC的三邊長分別為a,bc,且滿足+b2-6b+9=0,求c的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請從以下兩個小題中任選一題作答,若多選,則按所選的第一題計分.
A.正五邊形的一個外角的度數(shù)是
B.比較大小:2tan71° (填“>”、“=”或“<”)

查看答案和解析>>

同步練習(xí)冊答案