【題目】數(shù)學(xué)實驗課上,王老師讓大家用矩形紙片折出菱形.小華同學(xué)的操作步驟是:
(1)如圖①,將矩形ABCD沿著對角線BD折疊;
(2)如圖②,將圖①中的△A’BF沿BF折疊得到△A’’BF;
(3)如圖③,將圖②中的△CDF沿DF折疊得到△C’DF;
(4)將圖③展開得到圖④,其中BD、BE、DF為折疊過程中產(chǎn)生的折痕.
試解答下列問題:
(1)證明圖④中的四邊形BEDF為菱形;
(2)在圖④中,若BC=8,CD=4,求菱形BEDF的邊長.
【答案】(1)證明見解析(2)5
【解析】
(1)根據(jù)四邊相等的四邊形是菱形即可證明;
(2)由題意設(shè)BF=DF=x,則CF=8-x,在Rt△DCF中,根據(jù)DF2=CD2+CF2,列出方程即可解決問題.
(1)∵四邊形ABCD為矩形
∴ AD∥BC
∴∠ADB=∠DBC
由圖①的折疊知:∠ADB=∠BDF
∴∠BDF =∠DBC
∴FB=FD
由折疊得:BE=BF,DE=DF
∵BF=DF
∴BE=BF=DF=DE
∴四邊形BEDF為菱形
(2)根據(jù)題意,設(shè)BF=DF=x,則CF=8-x
∵四邊形ABCD為矩形
∴∠BCD=90°
∴x2-(8-x)2=42
∴x=5
∴菱形BEDF的邊長為5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實踐
某“綜合與實踐”小組開展了“長方體紙盒的制作”實踐活動,他們利用邊長為的正方形紙板制作出兩種不同方案的長方體盒子(圖1為無蓋的長方體紙盒,圖2為有蓋的長方體紙盒),請你動手操作驗證并完成任務(wù).(紙板厚度及接縫處忽略不計)
動手操作一:
根據(jù)圖1方式制作一個無蓋的長方體盒子.方法:先在紙板四角剪去四個同樣大小邊長為的小正方形,再沿虛線折合起來.
問題解決
(1)該長方體紙盒的底面邊長為_______;(請你用含的代數(shù)式表示)
(2)若,,則長方體紙盒的底面積為_______;
動手操作二:
根據(jù)圖2方式制作一個有蓋的長方體紙盒.方法:先在紙板四角剪去兩個同樣大小邊長為的小正方形和兩個同樣大小的小長方形,再沿虛線折合起來.
拓展延伸
(3)該長方體紙盒的體積為______;(請你用含的代數(shù)式表示)
(4)現(xiàn)有兩張邊長均為的正方形紙板,分別按圖1、圖2的要求制作無蓋和有蓋的兩個長方體盒子,若,求無蓋盒子的體積是有蓋盒子體積的多少倍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,O為原點,已知A(1,1),在坐標(biāo)軸上確定點P,使△AOP為等腰三角形,則符合條件的點P有_____個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠BAC=90°,點D是BC上一點,將△ABD沿AD翻折后得到△AED,邊AE交BC于點F.
(1)如圖①,當(dāng)AE⊥BC時,寫出圖中所有與∠B相等的角: ;所有與∠C相等的角: .
(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45) .
① 求∠B的度數(shù);
②是否存在這樣的x的值,使得△DEF中有兩個角相等.若存在,并求x的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:如圖,直線 AB、BC、AC 兩兩相交,交點分別為點 A、B、C,點 D 在線段 AB 上,過點 D 作 DE∥BC 交 AC 于點 E,過點 E 作 EF∥AB 交 BC 于點 F.若∠ABC=40°,求∠DEF 的度數(shù). 請將下面的解答過程補(bǔ)充完整,并填空(理由或數(shù)學(xué)式)
解:∵DE∥BC,( )
∴∠DEF= .( )
∵EF∥AB,
∴ =∠ABC.( )
∴∠DEF=∠ABC.( )
∵∠ABC=40°,
∴∠DEF= °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知E、F是□ABCD對角線AC上的兩點,且BE⊥AC,DF⊥AC.
(1)請寫出圖中全等三角形(不再添加輔助線).
(2)求證:△ABE≌△CDF;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC在坐標(biāo)平面內(nèi),三個頂點的坐標(biāo)分別為A(0,3),B(3,4),C(2,2).(正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度)
(1)作出△ABC繞點A順時針方向旋轉(zhuǎn)90°后得到的△A1B1C1,并寫出C1點的坐標(biāo) ;
(2)作出△ABC關(guān)于原點O成中心對稱的△A2B2C2,并求出△ABC的面積 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com