求代數(shù)式的值:
(1)當(dāng)a=2,b=-1,c=-3時,求代數(shù)式b2-4ac的值;
(2)“x,y兩數(shù)的平方和加上它們積的2倍”用代數(shù)式表示為:______,當(dāng)x=2,y=-3時,求這個代數(shù)式的值;
(3)已知a2-2a-2=0,求3a2-6a-8的值.
解:(1)把a(bǔ)=2,b=-1,c=-3代入b2-4ac,得
b2-4ac=(-1)2-4×2×(-3)=25,
所以代數(shù)式b2-4ac的值是25;
(2)根據(jù)題意知,該代數(shù)式是x2+y2+2xy,
當(dāng)x=2,y=-3時,
x2+y2+2xy=22+(-3)2+2×2×(-3)=1,
所以當(dāng)x=2,y=-3時,該代數(shù)式的值是1;
(3)∵a2-2a-2=0,
∴a2-2a=2 ①
∵3a2-6a-8=3(a2-2a)-8 ②
∴把①代入②,得
3a2-6a-8=3(a2-2a)-8=3×2-8=-2,
所以當(dāng)a2-2a-2=0時,代數(shù)式3a2-6a-8的值是-2.
分析:(1)把已知條件代入代數(shù)式求值即可;
(2)根據(jù)題意列出代數(shù)式,再把x=2,y=-3代入該代數(shù)式求值;
(3)由a2-2a-2=0求出a2-2a=2,再把3a2-6a-8變形得3(a2-2a)-8,只要把a(bǔ)2-2a整體代入求值即可.
點(diǎn)評:本題主要考查的是用“代入法”求代數(shù)式的值,在解答本題時的難點(diǎn)體現(xiàn)在(3)題中,代數(shù)式中的字母表示的數(shù)沒有明確告知,而是隱含在題設(shè)中,首先應(yīng)從題設(shè)中獲取代數(shù)式a2-2a的值,然后利用“整體代入法”求代數(shù)式的值.