【題目】二次函數(shù)為常數(shù),且)中的與的部分對(duì)應(yīng)值如表:
··· | ··· | |||||
··· | ··· |
下列結(jié)論錯(cuò)誤的是( )
A.B.是關(guān)于的方程的一個(gè)根;
C.當(dāng)時(shí),的值隨值的增大而減。D.當(dāng)時(shí),
【答案】C
【解析】
根據(jù)函數(shù)中的x與y的部分對(duì)應(yīng)值表,可以求得a、b、c的值 然后在根據(jù)函數(shù)解析式及其圖象即可對(duì)各個(gè)選項(xiàng)做出判斷.
解:根據(jù)二次函數(shù)的x與y的部分對(duì)應(yīng)值可知:
當(dāng)時(shí),,即,
當(dāng)時(shí),,即,
當(dāng)時(shí),,即,
聯(lián)立以上方程:,
解得:,
∴;
A、,故本選項(xiàng)正確;
B、方程可化為,
將代入得:,
∴是關(guān)于的方程的一個(gè)根,故本選項(xiàng)正確;
C、化為頂點(diǎn)式得:,
∵,則拋物線(xiàn)的開(kāi)口向下,
∴當(dāng)時(shí),的值隨值的增大而減。划(dāng)時(shí),的值隨值的增大而增大;故本選項(xiàng)錯(cuò)誤;
D、不等式可化為,令,
由二次函數(shù)的圖象可得:當(dāng)時(shí),,故本選項(xiàng)正確;
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為加強(qiáng)學(xué)生身體鍛煉,某校開(kāi)展體育“大課間”活動(dòng),學(xué)校決定在學(xué)生中開(kāi)設(shè)A:籃球,B:立定跳遠(yuǎn),C:跳繩,D:跑步,E:排球五種活動(dòng)項(xiàng)目.為了了解學(xué)生對(duì)五種項(xiàng)目的喜歡情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖所示的兩個(gè)統(tǒng)計(jì)圖.請(qǐng)結(jié)合圖中的信息解答下列問(wèn)題:
(1)在這項(xiàng)調(diào)查中,共調(diào)查了_______名學(xué)生;
(2)請(qǐng)將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校有1200名在校學(xué)生,請(qǐng)估計(jì)喜歡排球的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們把有一組對(duì)角為直角的四邊形叫直方形.設(shè)這兩個(gè)直角的夾邊長(zhǎng)分別為a,b和c,d,記叫直方形的方周長(zhǎng),如圖1.
(1)判斷與的大;
(2)如圖2,已知點(diǎn)P為雙曲線(xiàn)上一動(dòng)點(diǎn),過(guò)點(diǎn)P作PA⊥x軸交x軸正半軸于點(diǎn)A,以坐標(biāo)原點(diǎn)O為圓心、OA長(zhǎng)為半徑作,點(diǎn)B為上不同于點(diǎn)A的點(diǎn),當(dāng)以點(diǎn)P,A,O,B為頂點(diǎn)的直方形的方周長(zhǎng)取最小值時(shí),求直方形PAOB的面積;
(3)已知直線(xiàn):與x軸、y軸相交于點(diǎn)A,B,點(diǎn)P為平面上一點(diǎn),以點(diǎn)P,A,O,B為頂點(diǎn)的直方形的方周長(zhǎng),當(dāng)反比例函數(shù)的圖象與直線(xiàn)有兩個(gè)交點(diǎn)時(shí),求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)閱讀以下材料,并完成相應(yīng)任務(wù):
斐波那契(約1170-1250)是意大利數(shù)學(xué)家.1202年,撰寫(xiě)了《算盤(pán)書(shū)》一書(shū),他是第一個(gè)研究了印度和阿拉伯?dāng)?shù)學(xué)理論的歐洲人,他還曾在埃及、敘利亞、希臘,以及意大利西西里和法國(guó)普羅旺斯等地研究數(shù)學(xué).他研究了一列非常奇妙的數(shù):0,1,1,2,3,5,8,13,21,34,55,89,144……這列數(shù),被稱(chēng)為斐波那契數(shù)列.其特點(diǎn)是從第3項(xiàng)開(kāi)始,每一項(xiàng)都等于前兩項(xiàng)之和,斐波那契數(shù)列還有很多有趣的性質(zhì),在實(shí)際生活中也有廣泛的應(yīng)用.
任務(wù):(1)填寫(xiě)下表并寫(xiě)出通過(guò)填表你發(fā)現(xiàn)的規(guī)律:
項(xiàng) | 第2項(xiàng) | 第3項(xiàng) | 第4項(xiàng) | 第5項(xiàng) | 第6項(xiàng) | 第7項(xiàng) | 第8項(xiàng) | 第9項(xiàng) | … |
這一項(xiàng)的平方 | 1 | 1 | 4 | 9 | 25 | ________ | _______ | 441 | … |
這一項(xiàng)的前、后兩項(xiàng)的積 | 0 | 2 | 3 | 10 | 24 | _______ | _______ | 442 | … |
規(guī)律:_____________;
(2)現(xiàn)有長(zhǎng)為的鐵絲,要截成小段,每段的長(zhǎng)度不小于,如果其中任意三小段都不能拼成三角形,則的最大值為___________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC和△DCB中,AB=DC,∠A=∠D,AC、DB交于點(diǎn)M.
(1)求證:△ABC≌△DCB;
(2)作CN∥BD,BN∥AC,CN交BN于點(diǎn)N,四邊形BNCM是什么四邊形?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知平行四邊形對(duì)角線(xiàn)與交于點(diǎn)以邊分別為邊長(zhǎng)作正方形正方形,連接.
(1)求證:;
(2)若,請(qǐng)求出的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,分別為四邊形的邊的中點(diǎn),并且圖中四個(gè)小三角形的面積之和為,即,則圖中陰影部分的面積為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,AB=4cm,點(diǎn)E、F同時(shí)從C點(diǎn)出發(fā),以1cm/s的速度分別沿CB﹣BA、CD﹣DA運(yùn)動(dòng),到點(diǎn)A時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(s),△AEF的面積為S(cm2),則S(cm2)與t(s)的函數(shù)關(guān)系可用圖象表示為( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形OABC的邊長(zhǎng)為2,以O為圓心,EF為直徑的半圓經(jīng)過(guò)點(diǎn)A,連接AE、CF相交于點(diǎn)P.將正方形OABC從OA與OF重合的位置開(kāi)始,繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°的過(guò)程中,線(xiàn)段OP的最小值為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com