【題目】請閱讀以下材料,并完成相應任務:

斐波那契(約1170-1250)是意大利數(shù)學家.1202年,撰寫了《算盤書》一書,他是第一個研究了印度和阿拉伯數(shù)學理論的歐洲人,他還曾在埃及、敘利亞、希臘,以及意大利西西里和法國普羅旺斯等地研究數(shù)學.他研究了一列非常奇妙的數(shù):0,1,12,3,5,8,1321,34,55,89,144……這列數(shù),被稱為斐波那契數(shù)列.其特點是從第3項開始,每一項都等于前兩項之和,斐波那契數(shù)列還有很多有趣的性質,在實際生活中也有廣泛的應用.

任務:(1)填寫下表并寫出通過填表你發(fā)現(xiàn)的規(guī)律:

2

3

4

5

6

7

8

9

這一項的平方

1

1

4

9

25

________

_______

441

這一項的前、后兩項的積

0

2

3

10

24

_______

_______

442

規(guī)律:_____________

2)現(xiàn)有長為的鐵絲,要截成小段,每段的長度不小于,如果其中任意三小段都不能拼成三角形,則的最大值為___________________

【答案】(1)64,169,65,168;規(guī)律:從第二項起,偶數(shù)項的平方比這一項的前、后兩項的積大1,奇數(shù)項的平方比這一項的前、后兩項的積小1;(2)5

【解析】

1)根據(jù)表格中已有的數(shù)據(jù)可得到如下規(guī)律:從第二項起,偶數(shù)項的平方比這一項的前、后兩項的積大1,奇數(shù)項的平方比這一項的前、后兩項的積小1,進而填表即可;

2)根據(jù)三角形的三邊關系;三角形兩邊之和大于第三邊,由于每段的長為不小于1的整數(shù),所以設最小的是1,又由于其中任意三段都不能拼成三角形,所以每段長是:1,1,2,3,5,然后依此類推,最后每段的總和要不大于15即可.

解:(1)填表如下:

2

3

4

5

6

7

8

9

這一項的平方

1

1

4

9

25

64

169

441

這一項的前、后兩項的積

0

2

3

10

24

65

168

442

規(guī)律:從第二項起,偶數(shù)項的平方比這一項的前、后兩項的積大1,奇數(shù)項的平方比這一項的前、后兩項的積小1

2)構成三角形的條件是任何兩邊之和大于第三邊,因此構不成三角形的條件就是存在兩邊之和不超過第三邊,要使截得的小鐵絲數(shù)量最多,那么截成的小段鐵絲應盡可能的短.已知截成的鐵絲最小為,因此可以先截取2,第三段鐵絲就是,即從第三段開始,其長度是前兩段鐵絲長度的和.若第四段鐵絲為,第五段鐵絲為,這時剩下,由于,因此最后一段為.則截成的鐵絲的長度依次為:,所以最多能截成5段.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O中,ABAC,∠ACB75°,BC1,則陰影部分的面積是( 。

A.1+πB.πC.πD.1+π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級數(shù)學模擬測試中,六名學生的數(shù)學成績如下表所示,下列關于這組數(shù)據(jù)描述正確的是(  )

姓名

小紅

小明

小東

小亮

小麗

小華

成績(分)

110

106

109

111

108

110

A.眾數(shù)是110B.方差是16

C.平均數(shù)是109.5D.中位數(shù)是109

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解學生對博鰲論壇會的了解情況,某中學隨機抽取了部分學生進行問卷調查,將調查結果記作非常了解,了解,了解較少,不了解.四類分別統(tǒng)計,并繪制了下列兩幅統(tǒng)計圖(不完整).請根據(jù)圖中信息,解答下列問題:

(1)此次共調查了______名學生;扇形統(tǒng)計圖中所在的扇形的圓心角度數(shù)為______;

(2)將條形統(tǒng)計圖補充完整;

(3)若該校共有1600名學生,請你估計對博鰲論壇會的了解情況為非常了解的學生約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解學生陽光體育運動的實施情況,隨機調查了40名學生一周的體育鍛煉時間,并繪制成了如下圖所示的條形統(tǒng)計圖,根據(jù)統(tǒng)計圖提供的數(shù)據(jù),該校40名同學一周參加體育鍛煉時間的眾數(shù)與中位數(shù)分別是(

A.8,9B.8,8C.9,8D.10,9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為響應市政府關于“垃圾不落地市區(qū)更美麗”的主題宣傳活動,某校隨機調查了部分學生對垃圾分類知識的掌握情況.調查選項分為“A:非常了解,B:比較了解,C:了解較少,D:不了解”四種,并將調查結果繪制成兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:

1)把兩幅統(tǒng)計圖補充完整;

2)若該校學生有2000名,根據(jù)調查結果,估計該!胺浅A私狻迸c“比較了解”的學生共有    名;

3)已知“非常了解”的同學有3名男生和1名女生,從中隨機抽取2名進行垃圾分類的知識交流,請用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)為常數(shù),且)中的的部分對應值如表:

···

···

···

···

下列結論錯誤的是(  )

A.B.是關于的方程的一個根;

C.時,的值隨值的增大而減小;D.時,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線軸交于點、點,與軸交于點,頂點的橫坐標為,對稱軸交軸交于點,交與點 .

1)求頂點的坐標;

2)如圖2所示,過點的直線交直線于點,交拋物線于點.

①若直線分成的兩部分面積之比為,求點的坐標;

②若,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知三角形紙片△ABC和△DEF重合在一起,ABAC,DEDF,△ABC≌△DEF.數(shù)學實驗課上,張老師讓同學們用這兩張紙片進行如下操作:

(1)(操作探究1)保持△ABC不動,將△DEF沿射線BC方向平移至圖2所示位置,通過度量發(fā)現(xiàn)BECE12,則SCGESCAB   

(2)(操作探究2)保持△ABC不動,將△DEF通過一次全等變換(平移、旋轉或翻折后和△ABC拼成以BC為一條對角線的菱形,請用語言描述你的全等變換過程.

(3)(操作探究3)將兩個三角形按圖3所示放置:點C與點F重合,ABDE.保持△ABC不動,將△DEF沿射線DA方向平移.若AB13,BC10,設△DEF平移的距離為m

m0時,連接AD、BE,判斷四邊形ABED的形狀并說明理由;

在平移的過程中,四邊形ABED能否成為正方形?若能,請求出m的值;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案