如圖,已知拋物線y=ax2+bx+3與x軸交于A、B兩點(diǎn),過點(diǎn)A的直線l與拋物線交于點(diǎn)C,其中A點(diǎn)的坐標(biāo)是(1,0),C點(diǎn)坐標(biāo)是(4,3).
(1)求拋物線的解析式;
(2)在(1)中拋物線的對(duì)稱軸上是否存在點(diǎn)D,使△BCD的周長最?若存在,求出點(diǎn)D的坐標(biāo),若不存在,請(qǐng)說明理由;
(3)若點(diǎn)E是(1)中拋物線上的一個(gè)動(dòng)點(diǎn),且位于直線AC的下方,試求△ACE的最大面積及E點(diǎn)的坐標(biāo).
【答案】分析:(1)利用待定系數(shù)法求二次函數(shù)解析式解答即可;
(2)利用待定系數(shù)法求出直線AC的解析式,然后根據(jù)軸對(duì)稱確定最短路線問題,直線AC與對(duì)稱軸的交點(diǎn)即為所求點(diǎn)D;
(3)根據(jù)直線AC的解析式,設(shè)出過點(diǎn)E與AC平行的直線,然后與拋物線解析式聯(lián)立消掉y得到關(guān)于x的一元二次方程,利用根的判別式△=0時(shí),△ACE的面積最大,然后求出此時(shí)與AC平行的直線,然后求出點(diǎn)E的坐標(biāo),并求出該直線與x軸的交點(diǎn)F的坐標(biāo),再求出AF,再根據(jù)直線l與x軸的夾角為45°求出兩直線間的距離,再求出AC間的距離,然后利用三角形的面積公式列式計(jì)算即可得解.
解答:解:(1)∵拋物線y=ax2+bx+3經(jīng)過點(diǎn)A(1,0),點(diǎn)C(4,3),
,
解得
所以,拋物線的解析式為y=x2-4x+3;

(2)∵點(diǎn)A、B關(guān)于對(duì)稱軸對(duì)稱,
∴點(diǎn)D為AC與對(duì)稱軸的交點(diǎn)時(shí)△BCD的周長最小,
設(shè)直線AC的解析式為y=kx+b(k≠0),
,
解得
所以,直線AC的解析式為y=x-1,
∵y=x2-4x+3=(x-2)2-1,
∴拋物線的對(duì)稱軸為直線x=2,
當(dāng)x=2時(shí),y=2-1=1,
∴拋物線對(duì)稱軸上存在點(diǎn)D(2,1),使△BCD的周長最。

(3)如圖,設(shè)過點(diǎn)E與直線AC平行線的直線為y=x+m,
聯(lián)立,
消掉y得,x2-5x+3-m=0,
△=(-5)2-4×1×(3-m)=0,
即m=-時(shí),點(diǎn)E到AC的距離最大,△ACE的面積最大,
此時(shí)x=,y=-=-,
∴點(diǎn)E的坐標(biāo)為(,-),
設(shè)過點(diǎn)E的直線與x軸交點(diǎn)為F,則F(,0),
∴AF=-1=,
∵直線AC的解析式為y=x-1,
∴∠CAB=45°,
∴點(diǎn)F到AC的距離為×=,
又∵AC==3
∴△ACE的最大面積=×3×=,此時(shí)E點(diǎn)坐標(biāo)為(,-).
點(diǎn)評(píng):本題考查了二次函數(shù)綜合題型,主要考查了待定系數(shù)法求二次函數(shù)解析式,待定系數(shù)法求一次函數(shù)解析式,利用軸對(duì)稱確定最短路線問題,聯(lián)立兩函數(shù)解析式求交點(diǎn)坐標(biāo),利用平行線確定點(diǎn)到直線的最大距離問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)精英家教網(wǎng)C(0,3).
(1)求拋物線的解析式;
(2)求直線BC的函數(shù)解析式;
(3)在拋物線上,是否存在一點(diǎn)P,使△PAB的面積等于△ABC的面積,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.
(4)點(diǎn)Q是直線BC上的一個(gè)動(dòng)點(diǎn),若△QOB為等腰三角形,請(qǐng)寫出此時(shí)點(diǎn)Q的坐標(biāo).(可直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為x=1,且拋物線經(jīng)過A(-1,0)精英家教網(wǎng)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)在拋物線的對(duì)稱軸x=1上求一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,并求出此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•衡陽)如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點(diǎn),對(duì)稱軸是x=-1.
(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),以每秒1個(gè)單位長度的速度在線段OA上運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)M從O點(diǎn)出發(fā)以每秒3個(gè)單位長度的速度在線段OB上運(yùn)動(dòng),過點(diǎn)Q作x軸的垂線交線段AB于點(diǎn)N,交拋物線于點(diǎn)P,設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
①當(dāng)t為何值時(shí),四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)點(diǎn)P是拋物線對(duì)稱軸上一點(diǎn),若△PAB∽△OBC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c的頂點(diǎn)是(-1,-4),且與x軸交于A、B(1,0)兩點(diǎn),交y軸于點(diǎn)C;
(1)求此拋物線的解析式;
(2)①當(dāng)x的取值范圍滿足條件
-2<x<0
-2<x<0
時(shí),y<-3;
     ②若D(m,y1),E(2,y2)是拋物線上兩點(diǎn),且y1>y2,求實(shí)數(shù)m的取值范圍;
(3)直線x=t平行于y軸,分別交線段AC于點(diǎn)M、交拋物線于點(diǎn)N,求線段MN的長度的最大值;
(4)若以拋物線上的點(diǎn)P為圓心作圓與x軸相切時(shí),正好也與y軸相切,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案