【題目】如圖,在等腰中,,,是邊上的中點,點、分別在、邊上運動,且始終保持.連接、、.
(1)求證:;
(2)試證明是等腰直角三角形;
(3)若,,求的長.
【答案】(1)證明見解析;(2)證明見解析;(3)12.
【解析】
(1)根據(jù)等腰直角三角形的性質(zhì)等到AF=CF,∠A=∠FCE,根據(jù)SAS即可得出結(jié)論;
(2)由(1)可得:DF=EF,∠AFD=∠CFE,進而得出∠DFE=90°,即可得出結(jié)論;
(3)由(1)可得:AD=CE,則有AC=BC=CE+BE=AD+BE,即可得出結(jié)論.
(1)在等腰直角中,,,∴.
又∵是中點,∴,即,且.
在與中,∵,∴;
(2)由(1)可知,∴,∴是等腰三角形.
又∵,∴,∴.
∵,∴,∴是等腰直角三角形.
(3)由(1)可知,∴AD=CE.
∵AC=BC,∴AC=BC=CE+BE=AD+BE=5+7=12.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O且AB=AC,延長BC至點D,使CD=CA,連接AD交⊙O于點E,連接BE、CE.
(1)求證:△ABE≌△CDE;
(2)填空:
①當∠ABC的度數(shù)為 時,四邊形AOCE是菱形;
②若AE=6,EF=4,DE的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是邊長為3的等邊三角形,△BDC是等腰三角形,且∠BDC=120°.以D為頂點作一個60°角,使其兩邊分別交AB于點M,交AC于點N,連接MN,則△AMN的周長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=mx+n與反比例函數(shù)y=其中m、n為常數(shù),且mn<0,則它們在同一坐標系中的圖象可能是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,∠A=30°,AB=16,以AB為直徑的⊙O與BC邊相交于點D,與AC交于點F,過點D作DE⊥AC于點E.
(1)求證:DE是⊙O的切線;
(2)求CE的長;
(3)過點B作BG∥DF,交⊙O于點G,求弧BG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABO中,∠ABO=90°,其頂點O為坐標原點,點B在第二象限,點A在x軸負半軸上若BD⊥AO于點D,OB=,AB=2.
(1)求OA的長;
(2)求點A,B的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一列快車由甲地開往乙地,一列慢車由乙地開往甲地,兩車同時出發(fā),勻速運動.快車離乙地的路程y1(km)與行駛的時間x(h)之間的函數(shù)關(guān)系,如圖中線段AB所示;慢車離乙地的路程y2(km)與行駛的時間x(h)之間的函數(shù)關(guān)系,如圖中線段OC所示.根據(jù)圖象進行以下研究.
解讀信息:
(1)甲、乙兩地之間的距離為 km;
(2)快車的速度是 km/h,慢車的速度是 km/h.
(3)求線段AB與線段OC的解析式;
(4)快、慢兩車在何時相遇?相遇時距離乙地多遠?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作⊙O,⊙O交BC于點D,交CA的延長線于點E.過點D作DF⊥AC,垂足為F.
(1)求證:DF為⊙O的切線;
(2)若AB=4,∠C=30°,求劣弧的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF.
(1)求證:AF=DC;
(2)△ABC滿足什么條件時,四邊形ADCF是矩形?并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com