【題目】如圖,已知ABC中,AB=AC,A=30°,AB=16,以AB為直徑的O與BC邊相交于點(diǎn)D,與AC交于點(diǎn)F,過(guò)點(diǎn)D作DEAC于點(diǎn)E.

(1)求證:DE是O的切線(xiàn);

(2)求CE的長(zhǎng);

(3)過(guò)點(diǎn)B作BGDF,交O于點(diǎn)G,求弧BG的長(zhǎng).

【答案】(1)證明見(jiàn)解析(2)8-4(3)4π

【解析】

(1)如圖1,連接AD,OD,由AB為⊙O的直徑,可得ADBC,再根據(jù)AB=AC,可得BD=DC,再根據(jù)OA=OB,則可得ODAC,繼而可得DEOD,問(wèn)題得證;

(2)如圖2,連接BF,根據(jù)已知可推導(dǎo)得出DE=BF,CE=EF,根據(jù)∠A=30°,AB=16,可得BF=8,繼而得DE=4,DE為⊙O的切線(xiàn),可得ED2=EFAE,42=CE(16﹣CE),繼而可求得CE長(zhǎng);

(3)如圖3,連接OG,連接AD,BGDF,可得∠CBG=CDF=30°,再根據(jù)AB=AC,可推導(dǎo)得出∠OBG=45°,OG=OB,可得∠OGB=45°,從而可得∠BOG=90°,根據(jù)弧長(zhǎng)公式即可求得的長(zhǎng)度.

(1)如圖1,連接AD,OD;

AB為⊙O的直徑,

∴∠ADB=90°,ADBC,

AB=AC,

BD=DC,

OA=OB,

ODAC,

DEAC,

DEOD,

∴∠ODE=DEA=90°,

DE為⊙O的切線(xiàn);

(2)如圖2,連接BF,

AB為⊙O的直徑,

∴∠AFB=90°,

BFDE,

CD=BD,

DE=BF,CE=EF,

∵∠A=30°,AB=16,

BF=8,

DE=4,

DE為⊙O的切線(xiàn),

ED2=EFAE,

42=CE(16﹣CE),

CE=8﹣4,CE=8+4(不合題意舍去);

(3)如圖3,連接OG,連接AD,

BGDF,

∴∠CBG=CDF=30°,

AB=AC,

∴∠ABC=C=75°,

∴∠OBG=75°﹣30°=45°,

OG=OB,

∴∠OGB=OBG=45°,

∴∠BOG=90°,

的長(zhǎng)度==4π.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在等腰△ABC中,AB=AC=,BC=4,點(diǎn)DA出發(fā)以每秒個(gè)單位的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)B出發(fā)以每秒4個(gè)單位的速度向點(diǎn)C運(yùn)動(dòng),在DE的右側(cè)作∠DEF=∠B,交直線(xiàn)AC于點(diǎn)F,設(shè)運(yùn)動(dòng)的時(shí)間為t秒,則當(dāng)△ADF是一個(gè)以AD為腰的等腰三角形時(shí),t的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,.

⑴已知線(xiàn)段AB的垂直平分線(xiàn)與BC邊交于點(diǎn)P,連結(jié)AP,求證:;

⑵以點(diǎn)B為圓心,線(xiàn)段AB的長(zhǎng)為半徑畫(huà)弧,與BC邊交于點(diǎn)Q,連結(jié)AQ,若,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有甲乙兩名采購(gòu)員去同一家飼料公司分別購(gòu)買(mǎi)兩次飼料,兩次購(gòu)買(mǎi)飼料價(jià)格分別為m/千克和n/千克,且m≠n,兩名采購(gòu)員的采購(gòu)方式也不同,其中甲每次購(gòu)買(mǎi)1000千克,乙每次用去800元,而不管購(gòu)買(mǎi)多少飼料.

(1)甲、乙所購(gòu)飼料的平均單價(jià)各是多少?(用字母m、n表示)

(2)誰(shuí)的購(gòu)貨方式更合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】

在如圖所示的方格紙中,ABC的頂點(diǎn)都在小正方形的頂點(diǎn)上,以小正方形互相垂直的兩邊所在直線(xiàn)建立直角坐標(biāo)系.

1)作出ABC關(guān)于y軸對(duì)稱(chēng)的A1B1C1,其中A,B,C分別和A1B1,C1對(duì)應(yīng);

2)平移ABC,使得A點(diǎn)在x軸上,B點(diǎn)在y軸上,平移后的三角形記為A2B2C2,作出平移后的A2B2C2,其中A,B,C分別和A2,B2C2對(duì)應(yīng);

3)填空:在(2)中,設(shè)原ABC的外心為M,A2B2C2的外心為M,則MM2之間的距離為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰中,,邊上的中點(diǎn),點(diǎn)、分別在邊上運(yùn)動(dòng),且始終保持.連接、、

1)求證:

2)試證明是等腰直角三角形;

3)若,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b分別交y軸、x軸于C、D兩點(diǎn),與反比例函數(shù)y=(x>0)的圖象交于A(m,8),B(4,n)兩點(diǎn).

(1)求一次函數(shù)的解析式;

(2)根據(jù)圖象直接寫(xiě)出kx+b﹣<0x的取值范圍;

(3)求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】作圖題:已知MAB=60°,以AB的長(zhǎng)為菱形ABCD的邊長(zhǎng),點(diǎn)D在AM上,

(1)作出這個(gè)菱形.(保留作圖痕跡,不寫(xiě)作法,不用證明)

(2)若AB=2,則對(duì)角線(xiàn)AC的長(zhǎng)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)開(kāi)展以我最?lèi)?ài)的職業(yè)為主的調(diào)查活動(dòng),通過(guò)對(duì)學(xué)生的隨機(jī)抽樣調(diào)查得到一組數(shù)據(jù),下面兩圖是根據(jù)這組數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息解答下列各題:

(1)求在這次活動(dòng)中,一共調(diào)查了多少名學(xué)生?

(2)在扇形統(tǒng)計(jì)圖中,求教師所在扇形的圓心角的度數(shù);

(3)補(bǔ)全折線(xiàn)統(tǒng)計(jì)圖.

查看答案和解析>>

同步練習(xí)冊(cè)答案