9.如圖,圓中的弦AB與弦CD垂直于點E,點F在$\widehat{BC}$上,$\widehat{AC}$=$\widehat{BF}$,直線MN過點D,且∠MDC=∠DFC,求證:直線MN是該圓的切線.

分析 利用同弧所對的圓周角相等的出∠AOC=∠BOF,再用同角的余角相等,即可判斷出垂直,即可.

解答 證明:設(shè)該圓的圓心為點O,

在⊙O中,∵$\widehat{AC}$=$\widehat{BF}$,
∴∠AOC=∠BOF.
又∠AOC=2∠ABC,∠BOF=2∠BCF,
∴∠ABC=∠BCF.
∴AB∥CF.
∴∠DCF=∠DEB.
∵DC⊥AB,
∴∠DEB=90°.
∴∠DCF=90°.
∴DF為⊙O直徑.
且∠CDF+∠DFC=90°.
∵∠MDC=∠DFC,
∴∠MDC+∠DFC=90°.
即  DF⊥MN.
又∵M(jìn)N過點D,
∴直線MN是⊙O的切線.

點評 此題是切線的判定,主要考查了圓的性質(zhì),垂直的判斷方法,同角的余角相等,得出DF是直徑是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.根據(jù)從特殊到一般的數(shù)學(xué)推理方法說明“積的乘方,等于把積的每一個因式分別乘方,再把所得的冪相乘.(ab)n=anbn(n為正整數(shù))”.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.已知矩形OABC在如圖所示平面直角坐標(biāo)系中,點B的坐標(biāo)為(4,3),連接AC.動點P從點B出發(fā),以2cm/s的速度,沿直線BC方向運(yùn)動,運(yùn)動到C為止(不包含B、C兩點),過點P作PQ∥AC交線段BA于點Q,以PQ為邊向下作正方形PQMN,設(shè)正方形PQMN與△ABC重疊部分圖形面積為S(cm2),設(shè)點P的運(yùn)動時間為t(s).
(1)請用含t的代數(shù)式表示N點的坐標(biāo);
(2)求S與t之間的函數(shù)關(guān)系式,并指出t的取值范圍;
(3)如圖②,點G在邊OC上,且OG=1cm,在點P從點B出發(fā)的同時,另有一動點E從點O出發(fā),以2cm/s的速度,沿x軸正方向運(yùn)動,以O(shè)G、OE為一組鄰邊作矩形OEFG.請直接寫出當(dāng)點F落在正方形PQMN的內(nèi)部(不含邊界)時t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.已知y1=a1(x-m)2+5,點(m,25)在拋物線y2=a2x2+b2x+c2上,其中m>0.
(1)若a1=-1,點(1,4)在拋物線y1=a1(x-m)2+5上,求m的值;
(2)記O為坐標(biāo)原點,拋物線y2=a2x2+b2x+c2的頂點為M,若c2=0,點A(2,0)在此拋物線上,∠OMA=90°,求點M的坐標(biāo);
(3)若y1+y2=x2+16x+13,且4a2c2-b22=-8a2,求拋物線y2=a2x2+b2x+c2的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.如圖,△ABC內(nèi)接于⊙O,且AB=AC,延長BC至點D,使CD=AC,連接AD交⊙O交于點E,連接BE,CE.
(1)求證:AE=CE;
(2)若CE∥AB,求證:DE2=AE•AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.如圖,△ABC中,AB=AC,BE⊥AC于點E,AD⊥BC于點D,∠ABE=45°,AD與BE交于點F,連接CF.
求證:(1)∠DAC=∠EBC;
(2)△BEC≌△AEF;
(3)AF=2BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.如圖1,將寬為m,長是寬的2倍的長方形沿虛線剪開,得到四個直角三角形,這四個直角三角形可以拼成一個如圖2的大正方形.
(1)圖1中的長方形的面積和圖2中的正方形的面積的關(guān)系是:相等;
(2)當(dāng)m=2和m=3時,分別求圖2中大正方形的邊長;
(3)通過(2)問猜想圖2中的大正方形的邊長n與圖1中長方形的寬m有何關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.如圖,△ABC內(nèi)接于⊙O,若⊙O的半徑為6,∠B=60°,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

19.如圖,點P是∠AOB的角平分線上的一點,過點P作PC∥OA交OB于點C,PD⊥OA,若∠AOB=60°,OC=6,則PD=3$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案