19.根據(jù)從特殊到一般的數(shù)學(xué)推理方法說明“積的乘方,等于把積的每一個因式分別乘方,再把所得的冪相乘.(ab)n=anbn(n為正整數(shù))”.

分析 根據(jù)從“特殊到一般”,再從“一般到特殊”的思想,直接代入具體數(shù)據(jù)求出值,進而利用一般到特殊求解即可.

解答 解:∵(1×2)3=23=13×23,=8,
(2×3)4=64=24×34=1296
∴(ab)n=anbn
即積的乘方,等于把積的每一個因式分別乘方,再把所得的冪分別相乘.

點評 本題考查了冪的乘方與積的乘方:(amn=amn,(ab)m=ambm(m、n為正整數(shù)).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

1.下列計算正確的是( 。
A.a2•a3=a6B.(a34=a7C.(-a+b)(a+b)=b2-a2D.a3+a5=a8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

10.已知a-2b+1的值是-l,則(a-2b)2+2a-4b的值是(  )
A.-4B.-lC.0D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.在坐標系中,A、B兩點坐標分別為(-4,0)、(0,2),以AB為邊在第二象限內(nèi)作正方形ABCD.
①求邊AB的長; 
②求點C的坐標;
③你能否在x軸上找一點M,使△MDB的周長最。咳绻,請畫出M點,并直接寫出△MDB周長的最小值;如果不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.如圖,直線y=-$\sqrt{3}$x+2$\sqrt{3}$與x軸、x軸分別交于點A、B,兩動點D、E分別從A、B同時出發(fā)向點O運動(運動到O點停止),運動速度分別是1個單位長度/秒和$\sqrt{3}$個單位長度/秒,設(shè)運動時間為t秒,以點A為頂點的拋物線經(jīng)過點E,過點E作x軸的平行線,與拋物線的另一個交點為G點,與AB相交于點F.
(1)寫出點A、B的坐標.
(2)用含t的代數(shù)式分別表示EF和AF的長.
(3)當四邊形ADEF為菱形時,試判斷△AFG與△AGB是否相似,并說明理由.
(4)是否存在t值,使△ADF為直角三角形?若存在,求出此時拋物線的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.如圖1,直線AB交x軸正半軸于點A(a,0),交y軸正半軸于點B(0,b),且a、b滿足$\sqrt{a-4}$+|4-b|=0.
(1)求A、B兩點的坐標;
(2)C為OA的中點,作點C關(guān)于y軸的對稱點D,以BD為直角邊在第二象限作等腰Rt△BDE,過點E作EF⊥x軸于點F.若直線y=kx-4k將四邊形OBEF分為面積相等的兩部分,求k的值;
(3)如圖2,P為x軸上A點右側(cè)任意一點,以BP為邊作等腰Rt△PBM,其中PB=PM,直線MA交y軸于點Q,當點P在x軸上運動時,線段OQ的長是否發(fā)生變化?若不變,求其值;若變化,求線段OQ的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在平面直角坐標系中,己知點A(5,0),B(4,4)
(1)求過O、B、A三點的拋物線的解析式;
(2)在拋物線上求一點P(不同于點B),使S△PAO=S△ABO,請直接寫出點P的坐標;
(3)在位于線段OB上方的拋物線上有一動點M,其橫坐標為t,求△OBM的面積S和t的函數(shù)關(guān)系式;
(4)t為何值時,S△OBM=$\frac{3}{5}$S△ABO

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.如圖,OM是∠AOC的平分線,ON是∠BOC的平分線.

(1)如圖1,當∠AOB=90°,∠BOC=60°時,∠MON的度數(shù)是多少?為什么?
(2)如圖2,當∠AOB=70°,∠BOC=60°時,∠MON=35°(直接寫出結(jié)果).
(3)如圖3,當∠AOB=α,∠BOC=β時,猜想:∠MON=$\frac{1}{2}α$(直接寫出結(jié)果).
(4)從(1)(2)(3)的結(jié)果中,你能看出什么規(guī)律?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.如圖,圓中的弦AB與弦CD垂直于點E,點F在$\widehat{BC}$上,$\widehat{AC}$=$\widehat{BF}$,直線MN過點D,且∠MDC=∠DFC,求證:直線MN是該圓的切線.

查看答案和解析>>

同步練習冊答案