【題目】如圖,AB是⊙O的直徑,AC為弦,∠BAC的平分線交⊙O于點(diǎn)D,過(guò)點(diǎn)D的切線交AC的延長(zhǎng)線于點(diǎn)G.

求證:(1)DG⊥AG;

(2)AG+CG=AB.

【答案】見(jiàn)解析

【解析】

(1)連接OD,根據(jù)等腰三角形的性質(zhì)結(jié)合角平分線的性質(zhì)可得出∠CAD=ODA,利用內(nèi)錯(cuò)角相等,兩直線平行可得出AEOD,結(jié)合切線的性質(zhì)即可證出DGAG;

(2)過(guò)點(diǎn)DDMAB于點(diǎn)M,連接CD、DB,根據(jù)角平分線的性質(zhì)可得出DG=DM,

結(jié)合AD=AD、AGD=AMD=90°即可證出DAG≌△DAM(SAS),根據(jù)全等三角形的性質(zhì)可得出AG=AM,由∠GAD=MAD可得出= ,進(jìn)而可得出CD=BD,結(jié)合DG=DM可證出RtDGCRtDMB(HL),根據(jù)全等三角形的性質(zhì)可得出CG=BM,結(jié)合AB=AM+BM即可證出AG+CG=AB.

(1)連接OD,

OA=OD,

OAD=ODA,

DA平分∠BAC,

則∠OAD=CAD,

CAD=ODA,

AEOD,

DG是⊙O的切線,則

DGAG;

(2)過(guò)點(diǎn)DDMAB于點(diǎn)M,連接CD、DB,

DA平分∠BAC,

DG=DM,

結(jié)合AD=AD、AGD=AMD=90°,

DAG≌△DAM(SAS),

AE=AM,

由∠GAD=MAD,

=

CD=BD,結(jié)合DG=DM可證出RtDGCRtDMB(HL),

CG=BM,

AB=AM+BM,

AG+CG=AB.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,,、分別在、上,,且,點(diǎn)的中點(diǎn),延長(zhǎng)相交于點(diǎn),連接

1)求證:

2)若,,求的周長(zhǎng)和的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】八(2)班分成甲、乙兩組進(jìn)行一分鐘投籃測(cè)試,并規(guī)定得6分及以上為合格,得9分及以上為優(yōu)秀,現(xiàn)兩組學(xué)生的一次測(cè)試成績(jī)統(tǒng)計(jì)如下表:

成績(jī)(分)

4

5

6

7

8

9

甲組人數(shù)(人)

1

2

5

2

1

4

乙組人數(shù)(人)

1

1

4

5

2

2

1)請(qǐng)你根據(jù)上表數(shù)據(jù),把下面的統(tǒng)計(jì)表補(bǔ)充完整,并寫(xiě)出求甲組平均分的過(guò)程;

統(tǒng)計(jì)量

平均分

方差

眾數(shù)

中位數(shù)

合格率

優(yōu)秀率

甲組

   

2.56

   

6

80.0%

26.7%

乙組

6.8

1.76

7

   

86.7%

13.3%

2)如果從投籃的穩(wěn)定性角度進(jìn)行評(píng)價(jià),你認(rèn)為哪組成績(jī)更好?并說(shuō)明理由;

3)小聰認(rèn)為甲組成績(jī)好于乙組,請(qǐng)你說(shuō)出支持小聰觀點(diǎn)的理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y1=x+12+1y2=ax423交于點(diǎn)A1,3),過(guò)點(diǎn)Ax軸的平行線,分別交兩條拋物線于BC兩點(diǎn),且D、E分別為頂點(diǎn).則下列結(jié)論:①a=;AC=AE;③△ABD是等腰直角三角形;④當(dāng)x1時(shí),y1y2  其中正確結(jié)論的個(gè)數(shù)是( )

A. 1個(gè)B2個(gè)C3個(gè)D4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以坐標(biāo)原點(diǎn)O為圓心,作半徑為3的圓,若直線y=xb與⊙O相交,則b的取值范圍是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,E,F分別是矩形ABCD的邊AB,AD上的點(diǎn),∠FEC=∠FCE45°.

1)求證:AFCD

2)若AD3,△EFC的面積為4,求線段BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,點(diǎn)E是△ABC的內(nèi)心,過(guò)點(diǎn)E作EF∥AB交AC于點(diǎn)F,則EF的長(zhǎng)為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平行四邊形ABCD中,在平行四邊形內(nèi)作以線段AD為邊的等邊ADM,連結(jié)AM

1)如圖1,若點(diǎn)M在對(duì)角線BD上,且∠ABC=105°,AB=,求AM的長(zhǎng);

2)如圖2,點(diǎn)ECD邊上一點(diǎn),連接ME,點(diǎn)FBM的中點(diǎn),,若CEME=DE.求證:BMME

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形紙片ABCD沿其對(duì)角線AC折疊,使點(diǎn)B落到點(diǎn)B′的位置,AB′CD交于點(diǎn)E,若AB=8,AD=3,則圖中陰影部分的周長(zhǎng)為(  )

A.16B.19C.22D.25

查看答案和解析>>

同步練習(xí)冊(cè)答案