【題目】如圖,在平面直角坐標系xOy中,拋物線y=﹣x2+bx+cx軸交于點A(﹣3,0)和點B,與y軸交于點C 02).

1)求拋物線的表達式,并用配方法求出頂點D的坐標;

2)若點E是點C關(guān)于拋物線對稱軸的對稱點,求tanCEB的值.

【答案】1y=﹣x2+2,頂點D的坐標為(﹣1,);(2tanCEB的值是

【解析】

1)∵拋物線y=﹣x2+bx+cx軸交于點A(﹣3,0)和點B,與y軸交于點C 02),

,

y=﹣x2x+2,

∴拋物線頂點D的坐標為(﹣1,),

即該拋物線的解析式為y=﹣x2x+2,頂點D的坐標為(﹣1,);

2)∵y,

∴該拋物線的對稱軸為直線x=﹣1,

∵點E是點C關(guān)于拋物線對稱軸的對稱點,點C0,2),

∴點E的坐標為(﹣2,2),

y0時,0,得x1=﹣3,x21,

∴點B的坐標為(1,0),

設(shè)直線BE的函數(shù)解析式為ykx+n,

,得,

∴直線BE的函數(shù)解析式為y=﹣+,

x0時,y,

設(shè)直線BEy軸交于點F,則點F的坐標為(0,),

OF

∵點C0,2),點E(﹣2,2),

OC2,CE2

CF2,

tanCEF

tanCEB的值是

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB的直徑,C點在上,連接AC,的平分線交于點D,過點DAC的延長線于點E

1)求證:DE的切線;

2)若AB10,,連接CD,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,的頂點坐標分別是,對于的橫長、縱長、縱橫比給出如下定義:

中的最大值,稱為的橫長,記作;將中的最大值,稱為的縱長,記作;將叫做的縱橫比,記作

例如:如圖的三個頂點的坐標分別是,則

所以

如圖2,點,

的縱橫比______

的縱橫比______;

F在第四象限,若的縱橫比為1,寫出一個符合條件的點F的坐標;

M是雙曲線上一個動點,若的縱橫比為1,求點M的坐標;

如圖3,點為圓心,1為半徑,點N上一個動點,直接寫出的縱橫比的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點D,DE 是⊙O的切線,連結(jié)OD,OE

(1)求證:∠DEA=90°;

(2)若BC=4,寫出求 △OEC的面積的思路.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P點是某海域內(nèi)的一座燈塔的位置,船A停泊在燈塔P的南偏東53°方向的50海里處,船B位于船A的正西方向且與燈塔P相距20海里.(本題參考數(shù)據(jù)sin53°≈0.80cos53°≈0.60tan53°≈1.33)

(1)試問船B在燈塔P的什么方向?

(2)求兩船相距多少海里?(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】伊利集團是中國規(guī)模最大、產(chǎn)品線最全的乳制品企業(yè).綜合實踐小組的同學從網(wǎng)上搜集到如下一些伊利集團近幾年的營業(yè)狀況的資料,其中圖120132018年伊利集團營業(yè)收入及凈利潤情況統(tǒng)計圖,圖22018年伊利集團各品類業(yè)務(wù)營收比例情況統(tǒng)計圖(數(shù)據(jù)來源:公司財報、中商產(chǎn)業(yè)研究院)

(1)解讀信息:

綜合實踐小組的同學結(jié)合統(tǒng)計圖提出了如下問題,請你解答:

①2018年,伊利集團營收及凈利再次刷新行業(yè)紀錄,穩(wěn)居亞洲乳業(yè)第一.這一年,伊利集團實現(xiàn)營業(yè)收人   億元,凈利潤   億元;

2018年伊利集團“奶粉及奶制品“業(yè)務(wù)的營業(yè)收入(結(jié)果保留整數(shù));

201320186年中;伊利集團凈利潤比上一年增長額最多的是   年;估計2019年伊利集團的凈利潤將比上一年增長   億元,理由是   ;

(2)拓展活動:

如圖,同學們收集了伊利集團旗下“優(yōu)酸乳、谷粒多、QQ星,安幕!彼姆N產(chǎn)品的商標圖片(四張圖片除商標圖案外完全相同,分別記為AB,C,D)(見圖3).同學們用這四張卡片設(shè)計了一個游戲,規(guī)則是:將四張圖片背面朝上放在桌上,攪勻后,由甲從中隨機抽取一張,記下商標名稱后放回;再次攪勻后,由乙從中隨機抽取一張.若兩人抽到的商標相同則甲獲勝;否則,乙獲勝,這個規(guī)則對甲乙雙方公平嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,C=90°,BD是角平分線,點O在AB上,以點O為圓心,OB為半徑的圓經(jīng)過點D,交BC于點E.

(1)求證:AC是O的切線;

(2)若OB=10,CD=8,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,AB = AC = 5,tanB =. O的半徑為,且O經(jīng)過點BC,那么線段OA的長等于________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,半圓O的直徑AB5cm,點MAB上且AM1cm,點P是半圓O上的動點,過點BBQPMPM(或PM的延長線)于點Q.設(shè)PMxcm,BQycm.(當點P與點A或點B重合時,y的值為0)小石根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.下面是小石的探究過程,請補充完整:

1)通過取點、畫圖、測量,得到了xy的幾組值,如下表:

x/cm

1

1.5

2

2.5

3

3.5

4

y/cm

0

3.7

______

3.8

3.3

2.5

______

2)建立平面直角坐標系,描出以補全后的表中各對對應(yīng)值為坐標的點,畫出該函數(shù)的圖象;

3)結(jié)合畫出的函數(shù)圖象,解決問題:當BQ與直徑AB所夾的銳角為60°時,PM的長度約為______cm

查看答案和解析>>

同步練習冊答案