【題目】如圖,在△ABC中,AB=AC=10cm,BD⊥AC于點D,且BD=8cm.點M從點A出發(fā),沿AC的方向勻速運動,速度為2cm/秒;同時直線PQ由點B出發(fā),沿BA的方向勻速運動,速度為1cm/秒,運動過程中始終保持PQ∥AC,直線PQ交AB于點P、交BC于點Q、交BD于點F.連接PM,設運動時間為t秒(0<t<5).
(1)當t為何值時,四邊形PQCM是平行四邊形?
(2)設四邊形PQCM的面積為y(cm2),求y與t之間的函數(shù)關系式.
【答案】(1)當t=s時,四邊形PQCM是平行四邊形;(2)y=t2﹣8t+40.
【解析】試題分析:(1)假設為平行四邊形,根據(jù)平行四邊形的性質(zhì)得到對邊平行,進而得到AP=AM,列出關于t的方程,求出方程的解得到滿足題意t的值;
(2)根據(jù),可得△PBQ∽△ABC,根據(jù)相似三角形的形狀必然相同可知也為等腰三角形,即再由證得的相似三角形得底比底等于高比高,用含的代數(shù)式就可以表示出,進而得到梯形的高又點的運動速度和時間可知點走過的路程 所以梯形的下底 最后根據(jù)梯形的面積公式即可得到與的關系式;
試題解析:(1)假設四邊形PQCM是平行四邊形,則PM∥QC,
∴AP:AB=AM:AC,
∵AB=AC,
∴AP=AM,即10t=2t,
解得:
∴當時,四邊形PQCM是平行四邊形;
(2)∵,
∴△PBQ∽△ABC,
∴△PBQ為等腰三角形,PQ=PB=t,
∴ ,即
解得:
又∵
科目:初中數(shù)學 來源: 題型:
【題目】鄭老師想為希望小學四年(3)班的同學購買學習用品,了解到某商店每個書包的價格比每本詞典多8元,用124元恰好可以買到3個書包和2本詞典.
(1)每個書包和每本詞典的價格各是多少元?
(2)鄭老師有1000元,他計劃為全班40位同學每人購買一件學習用品(一個書包或一本詞典)后,余下不少于100元且不超過120元的錢購買體育用品,共有哪幾種購買書包和詞典的方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC與△DEF中,給出下列六個條件:(1)AB=DE;(2)BC=EF;(3)AC=DF;(4)∠A=∠D;(5)∠B=∠E;(6)∠C=∠F,以其中三個條件為已知,不能判斷△ABC與△DEF全等的是( )
A. (1)(2)(3)B. (1)(2)(5)
C. (1)(4)(6)D. (2)(3)(4)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(a,0),B(b,0),C(-1,2),且+(a+2b-4)2=0.
(1)求a,b的值.
(2)在y軸的正半軸上存在一點M,使S△COM=S△ABC,求出點M的坐標.
(3)在坐標軸的其他位置是否有在點M,使S△COM=S△ABC仍成立?若存在,請直 接寫出符合條件的點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用兩個全等的等邊三角形△ABC和△ACD拼成菱形ABCD.把一個含60°角的三角尺與這個菱形疊合,使三角尺的60°角的頂點與點A重合,兩邊分別與AB,AC重合.將三角尺繞點A按逆時針方向旋轉.
(1)當三角尺的兩邊分別與菱形的兩邊BC,CD相交于點E,F時,(如圖1),通過觀察或測量BE,CF的長度,你能得出什么結論并證明你的結論;
(2)當三角尺的兩邊分別與菱形的兩邊BC,CD的延長線相交于點E,F時(如圖2),你在(1)中得到的結論還成立嗎?簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某汽車專賣店銷售A,B兩種型號的新能源汽車.上周售出1輛A型車和3輛B型車,銷售額為96萬元;本周已售出2輛A型車和1輛B型車,銷售額為62萬元.
(1)求每輛A型車和B型車的售價各為多少萬元?
(2)甲公司擬向該店購買A,B兩種型號的新能源汽車共6輛,且A型號車不少于2輛,購車費不少于130萬元,則有哪幾種購車方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為切實做好校園疫情防控和開學的各項準備工作,某校準備再次購進免手洗消毒凝膠和醫(yī)用口罩用于防疫,若購進30箱醫(yī)用口罩和20箱免手洗消毒凝膠共需8500元;若購進40箱醫(yī)用口罩和10箱免手洗消毒凝膠共需8000元.
(1)求醫(yī)用口罩和免手洗消毒凝膠每箱購進價格分別為多少元?
(2)若該校購進免手洗消毒凝膠的數(shù)量比購進醫(yī)用口罩數(shù)量的2倍少10箱,且用于購置兩種物資的總經(jīng)費不超過9000元,則該校至多購進醫(yī)用口罩多少箱?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,D是BC邊上一點,以DB為直徑的⊙O經(jīng)過AB的中點E,交AD的延長線于點F,連接EF.
(1)求證:∠1=∠F;
(2)若sinB=,EF=2,求CD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com