【題目】為了測量校園里水平地面上的一棵大樹的高度,數(shù)學綜合實踐活動小組的同學們開展如下活動:某一時刻,測得身高1.6m的小明在陽光下的影長是1.2m,在同一時刻測得這棵大樹的影長是3.6m,則此樹的高度是m.

【答案】4.8
【解析】解:設此樹的高度是hm,則 = ,解得h=4.8(m). 所以答案是:4.8.
【考點精析】本題主要考查了相似三角形的應用和平行投影的相關知識點,需要掌握測高:測量不能到達頂部的物體的高度,通常用“在同一時刻物高與影長成比例”的原理解決;測距:測量不能到達兩點間的舉例,常構造相似三角形求解;太陽光線可以看成是平行光線,平行光線所形成的投影稱為平行投影;作物體的平行投影:由于平行投影的光線是平行的,而物體的頂端與影子的頂端確定的直線就是光線,故根據(jù)另一物體的頂端可作出其影子才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解學生對“A:古詩詞,B:國畫,C:京劇,D:書法”等中國傳統(tǒng)文化項目的最喜愛情況,在全校范圍內隨機抽取部分學生進行問卷調查(每人限選一項),并將調查結果繪制成如下不完整的統(tǒng)計圖.

請結合統(tǒng)計圖回答下列問題:
(1)在這次調查中,一共調查了名學生;在扇形統(tǒng)計圖中,項目B對應扇形的圓心角是度;
(2)如果該校共有2000名學生,請估計該校最喜愛項目A的學生有多少人?
(3)若該校在A、B、C、D四項中任選兩項成立課外興趣小組,請用畫樹狀圖(或列表)計算恰好選中項目A和D的概率.
故答案為:200,72;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點A(0,6),B(8,0),AB=10,如圖作∠DBO=∠ABO,∠CAy=∠BAO,BD交y軸于點E,直線DO交AC于點C.

(1)①求證:△ACO≌△EDO;②求出線段AC、BD的位置關系和數(shù)量關系;

(2)動點P從A出發(fā),沿A﹣O﹣B路線運動,速度為1,到B點處停止運動;動點Q從B出發(fā),沿B﹣O﹣A運動,速度為2,到A點處停止運動.二者同時開始運動,都要到達相應的終點才能停止.在某時刻,作PE⊥CD于點E,QF⊥CD于點F.問兩動點運動多長時間時△OPE與△OQF全等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:如果兩個等腰三角形的頂角互補,頂角的頂點又是同一個點,而且它們的腰也分別相等,則稱這兩個三角形互為頂補等腰三角形

(1)如圖1,若ABCADE互為頂補等腰三角形.∠BAC>90°,AMBCMANEDN求證:DE=2AM;

(2)如圖2,在四邊形ABCD中,AD=AB,CD=BC,∠B=90°,∠A=60°,在四邊形ABCD的內部是否存在點P,使得PADPBC互為頂補等腰三角形?若存在,請給予證明,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 已知∠1+∠2=180o, ∠3=∠B, 試說明∠DEC+∠C=180o. 請完成下列填空:

解:∵∠1+∠2=180o(已知)

又∵∠1+ =180o(平角定義)

∴∠2= (同角的補角相等)

(內錯角相等,兩直線平行)

∴∠3 = (兩直線平行,內錯角相等)

又∵∠3=∠B(已知)

(等量代換)

( )

∴∠DEC+∠C=180o( )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】首都國際機場連續(xù)五年排名全球最繁忙機場第二位,該機場2012﹣2016年客流量統(tǒng)計結果如表:

年份

2012

2013

2014

2015

2016

客流量(萬人次)

8192

8371

8613

8994

9400

根據(jù)統(tǒng)計表中提供的信息,預估首都國際機場2017年客流量約萬人次,你的預估理由是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠BOC=2AOB,OD平分∠AOC,BOD=20°,則∠AOB等于(  ).

A. 50° B. 40° C. 30° D. 20°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形ABCD中,點E是對角線AC上的動點(與點A,C不重合),連接BE.
(1)將射線BE繞點B順時針旋轉45°,交直線AC于點F.
①依題意補全圖1;

②小研通過觀察、實驗,發(fā)現(xiàn)線段AE,F(xiàn)C,EF存在以下數(shù)量關系:
AE與FC的平方和等于EF的平方.小研把這個猜想與同學們進行交流,通過討論,形成證明該猜想的幾種想法:
想法1:將線段BF繞點B逆時針旋轉90°,得到線段BM,要證AE,F(xiàn)C,EF的關系,只需證AE,AM,EM的關系.
想法2:將△ABE沿BE翻折,得到△NBE,要證AE,F(xiàn)C,EF的關系,只需證EN,F(xiàn)N,EF的關系.

請你參考上面的想法,用等式表示線段AE,F(xiàn)C,EF的數(shù)量關系并證明;(一種方法即可)
(2)如圖2,若將直線BE繞點B順時針旋轉135°,交直線AC于點F.小研完成作圖后,發(fā)現(xiàn)直線AC上存在三條線段(不添加輔助線)滿足:其中兩條線段的平方和等于第三條線段的平方,請直接用等式表示這三條線段的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】建立模型:如圖1,已知ABC,AC=BC,C=90°,頂點C在直線l上.

實踐操作:過點AADl于點D,過點BBEl于點E,求證:CADBCE

模型應用:(1)如圖2,在直角坐標系中,直線l1y=x+4y軸交于點A,與x軸交于點B,將直線l1繞著點A順時針旋轉45°得到l2.求l2的函數(shù)表達式.

(2)如圖3,在直角坐標系中,點B(8,6),作BAy軸于點A,作BCx軸于點C,P是線段BC上的一個動點,點Qa2a﹣6)位于第一象限內.問點A、PQ能否構成以點Q為直角頂點的等腰直角三角形,若能,請求出此時a的值,若不能,請說明理由.

查看答案和解析>>

同步練習冊答案