如圖1,拋物線y=x2的頂點(diǎn)為P,A、B是拋物線上兩點(diǎn),AB∥x軸,四邊形ABCD為矩形,CD邊經(jīng)過(guò)點(diǎn)P,AB=2AD.
(1)求矩形ABCD的面積;
(2)如圖2,若將拋物線“y=x2”,改為拋物線“y=x2+bx+c”,其他條件不變,請(qǐng)猜想矩形ABCD的面積;
(3)若將拋物線“y=x2+bx+c”改為拋物線“y=ax2+bx+c”,其他條件不變,請(qǐng)猜想矩形ABCD的面積.(用a、b、c表示,并直接寫(xiě)出答案)
附加題:若將題中“y=x2”改為“y=ax2+bx+c”,“AB=2AD”條件不要,其他條件不變,探索矩形ABCD面積為常數(shù)時(shí),矩形ABCD需要滿(mǎn)足什么條件并說(shuō)明理由.

【答案】分析:(1)設(shè)AD=m.得出AB=2m,因?yàn)閽佄锞是軸對(duì)稱(chēng)圖形,求出點(diǎn)A的坐標(biāo).然后易求矩形ABCD的面積.
(2)設(shè)拋物線y=x2+bx+c.設(shè)AD=m,AB=2m,求出點(diǎn)A的坐標(biāo)為(h-m,n+m),然后可求出矩形ABCD的面積.
(3)設(shè)拋物線y=ax2+bx+c,設(shè)AD=m,=k得出AB=km,求出矩形ABCD面積的表達(dá)式即可推論.
解答:解:(1)設(shè)AD=m,
∵AB=2AD,
∴AB=2m,又拋物線是軸對(duì)稱(chēng)圖形,
∴PD=m.
∴點(diǎn)A的坐標(biāo)為(-m,m),
∴m2=m,
又∵m≠0,
∴m=1
∴矩形ABCD的面積為1×2=2.

(2)設(shè)拋物線y=x2+bx+c=(x-h)2+n,
∴點(diǎn)P的坐標(biāo)為(h,n),
設(shè)AD=m,
∵AB=2AD,
∴AB=2m,
又∵拋物線是軸對(duì)稱(chēng)圖形,
∴PD=m,
∴點(diǎn)A的坐標(biāo)為(h-m,n+m),
∴n+m=(h-m-h)2+n,
∴m=m2
又∵m≠0,
∴m=1,
∴矩形ABCD的面積為1×2=2.

(3)

附加題:
解:為常數(shù),
設(shè)拋物線y=ax2+bx+c=a(x-h)2+n,
∴點(diǎn)P的坐標(biāo)為(h,n),
設(shè)AD=m,=k,
∴AB=km,
又∵拋物線是軸對(duì)稱(chēng)圖形,
∴PD=
∴點(diǎn)A的坐標(biāo)為(),
∴n+m=a(h--h)2+n,
∴m=,
又∵m≠0,
∴m=,
∴矩形ABCD的面積為km2=
∵a為常數(shù),
∴k為常數(shù)時(shí),矩形ABCD的面積為常數(shù),
為常數(shù)時(shí),矩形ABCD的面積為常數(shù).
點(diǎn)評(píng):本題綜合考查了二次函數(shù)的相關(guān)知識(shí)以及矩形ABCD面積的計(jì)算公式,難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知二次函數(shù)的圖象是經(jīng)過(guò)點(diǎn)A(1,0),B(3,0),E(0,6)三點(diǎn)的一條拋物線.
(1)求這條拋物線的解析式;
(2)如圖,設(shè)拋物線的頂點(diǎn)為C,對(duì)稱(chēng)軸交x軸于點(diǎn)D,在y軸正半軸上有一點(diǎn)P,且以A、O、P為頂點(diǎn)的三角形與△ACD相似,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

精英家教網(wǎng)閱讀材料:如圖1,過(guò)△ABC的三個(gè)頂點(diǎn)分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長(zhǎng)度叫△ABC的“鉛垂高”(h).我們可得出一種計(jì)算三角形面積的新方法:S△ABC=
12
ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問(wèn)題:
如圖2,拋物線頂點(diǎn)坐標(biāo)為點(diǎn)C(1,4),交x軸于點(diǎn)A(3,0),點(diǎn)P是拋物線(在第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)B為拋物線與y軸的交點(diǎn),求直線AB的解析式;
(3)在(2)的條件下,設(shè)拋物線的對(duì)稱(chēng)軸分別交AB、x軸于點(diǎn)D、M,連接PA、PB,當(dāng)P點(diǎn)運(yùn)動(dòng)到頂點(diǎn)C時(shí),求△CAB的鉛垂高CD及S△CAB
(4)在(2)的條件下,設(shè)P點(diǎn)的橫坐標(biāo)為x,△PAB的鉛垂高為h、面積為S,請(qǐng)分別寫(xiě)出h和S關(guān)于x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖1,矩形ABCD,點(diǎn)C與坐標(biāo)原點(diǎn)O重合,點(diǎn)A在x軸上,點(diǎn)B坐標(biāo)為(3,
3
),求經(jīng)過(guò)A、B、C三點(diǎn)拋物線的解析式;
(2)如圖2,拋物線E:y=-
1
2
x2+bx+c
經(jīng)過(guò)坐標(biāo)原點(diǎn)O,其頂點(diǎn)在y軸左側(cè),以O(shè)為頂點(diǎn)作矩形OADC,A、C為拋物線E上兩點(diǎn),若AC∥x軸,AD=2CD,則拋物線的解析式是
 
;
(3)如圖3,點(diǎn)A、B、C分別為拋物線F:y=ax2+bx+c(a<0)上的點(diǎn),點(diǎn)B在對(duì)稱(chēng)軸右側(cè),點(diǎn)D在拋物線外,順次連接A、B、C、D四點(diǎn),所成四邊形為矩形,且AC∥x軸,AD=2CD,求矩形ABCD的周長(zhǎng)(用含a的式子表示).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,將拋物線y=-
1
2
x2
平移后經(jīng)過(guò)原點(diǎn)O和點(diǎn)A(6,0),平移后的拋物線的頂點(diǎn)為點(diǎn)B,對(duì)稱(chēng)軸與拋物線y=-
1
2
x2
相交于點(diǎn)C,則圖中直線BC與兩條拋物線圍成的陰影部分的面積為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀材料:
如圖1,過(guò)△ABC的三個(gè)頂點(diǎn)分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長(zhǎng)度叫△ABC的“鉛垂高”(h).我們可得出一種計(jì)算三角形面積的新方法:S△ABC=ah,即三角形面積等于水平寬與鉛垂高乘積的一半.

解答下列問(wèn)題:
如圖2,拋物線頂點(diǎn)坐標(biāo)為點(diǎn)C(1,4),交x軸于點(diǎn)A(3,0),點(diǎn)P是拋物線(在第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)B為拋物線與y軸的交點(diǎn),求直線AB的解析式;
(3)設(shè)點(diǎn)P是拋物線(第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn),是否存在一點(diǎn)P,使S△PAB=S△CAB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案