【題目】如圖,反比例函數(shù)y1=與一次函數(shù)y2=mx+n相交于A(﹣1,2),B(4,a)兩點,AE⊥y軸于點E,則:
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)若y1≤y2則直接寫出x的取值范圍;
(3)若M為反比例函數(shù)上第四象限內(nèi)的一個動點,若滿足S△ABM=S△AOB,則求點M的坐標(biāo).
【答案】(1) ,;(2)x≤﹣1或0<x≤4;(3)點M的坐標(biāo)(2,﹣1)或(3+,).
【解析】
(1)先將點A代入反比例函數(shù)解析式中即可求出反比例函數(shù)的解析式,然后根據(jù)反比例函數(shù)的解析式求出點B的坐標(biāo),再利用待定系數(shù)法即可求出一次函數(shù)的解析式;
(2)根據(jù)圖象及兩個函數(shù)的交點即可得出x的取值范圍;
(3)先求出一次函數(shù)與y軸的交點坐標(biāo),然后利用S△ABM=S△AOB和平移的相關(guān)知識分兩種情況:向上平移或向下平移兩種情況,分別求出平移后的直線與反比例函數(shù)在第四象限的交點即可.
(1)把A(﹣1,2)代入反比例函數(shù)得,k=﹣2
∴反比例函數(shù)的關(guān)系式為,
把B(4,a)代入得, ,
∴B(4,)
把A(﹣1,2),B(4,)代入一次函數(shù)得,
解得
∴一次函數(shù)的關(guān)系式為:
(2)當(dāng)時,反比例函數(shù)的圖象在一次函數(shù)圖象的下方,
結(jié)合圖象可知,當(dāng),自變量x的取值范圍為:x≤﹣1或0<x≤4.
(3)當(dāng)時,
∴與y軸的交點坐標(biāo)為(0,),如圖:
∵S△ABM=S△AOB
∴根據(jù)平行線間的距離處處相等,可將一次函數(shù)進行平移個單位,則平移后的直線與反比例函數(shù)在第四象限的交點即為所求的M點.
將向下平移個單位過O點,關(guān)系式為:,
解得 ,
∵M在第四象限,
∴M(2,﹣1),
將向上平移個單位后直線的關(guān)系式為:,
解得 ,
∵M在第四象限,
∴,
綜上所述,點M的坐標(biāo)(2,﹣1)或,
科目:初中數(shù)學(xué) 來源: 題型:
【題目】株洲五橋主橋主孔為拱梁鋼構(gòu)組合體系(如圖1),小明暑假旅游時,來到五橋觀光,發(fā)現(xiàn)拱梁的路面部分有均勻排列著9根支柱,他回家上網(wǎng)查到了拱梁是拋物線,其跨度為20米,拱高(中柱)10米,于是他建立如圖2的坐標(biāo)系,發(fā)現(xiàn)可以將余下的8根支柱的高度都算出來了,請你求出中柱左邊第二根支柱CD的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC與△A′B′C′在平面直角坐標(biāo)系中的位置如圖.
(1)分別寫出下列各點的坐標(biāo): A′ ;B′ ;C′ ;
(2)若點P(a,b)是△ABC內(nèi)部一點,則平移后△A′B′C′內(nèi)的對應(yīng)點P′的坐標(biāo)為 ;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)閱讀以下內(nèi)容:
已知實數(shù)x,y滿足x+y=2,且求k的值.
三位同學(xué)分別提出了以下三種不同的解題思路:
甲同學(xué):先解關(guān)于x,y的方程組,再求k的值.
乙同學(xué):先將方程組中的兩個方程相加,再求k的值.
丙同學(xué):先解方程組,再求k的值.
(2)你最欣賞(1)中的哪種思路?先根據(jù)你所選的思路解答此題,再對你選擇的思路進行簡要評價.
(評價參考建議:基于觀察到題目的什么特征設(shè)計的相應(yīng)思路,如何操作才能實現(xiàn)這些思路、運算的簡潔性,以及你依此可以總結(jié)什么解題策略等等)
請先在以下相應(yīng)方框內(nèi)打勾,再解答相應(yīng)題目.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若將一幅三角板按如圖所示的方式放置,則下列結(jié)論中不正確的是( )
A. ∠1=∠3 B. 如果∠2=30°,則有AC∥DE
C. 如果∠2=30°,則有BC∥AD D. 如果∠2=30°,必有∠4=∠C
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某高校學(xué)生會向全校2900名學(xué)生發(fā)起了“愛心一日捐”捐款活動,為了解捐款情況,學(xué)生會隨機調(diào)查了部分學(xué)生的捐款金額,并用得到的數(shù)據(jù)繪制了如下統(tǒng)計圖①和圖②,請根據(jù)相關(guān)信息,解答下列問題:
(Ⅰ)本次接受隨機抽樣調(diào)查的學(xué)生人數(shù)為 , 圖①中m的值是;
(Ⅱ)求本次你調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ)根據(jù)樣本數(shù)據(jù),估計該校本次活動捐款金額為10元的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于, (在的左側(cè)),與軸交于點,拋物線上的點的橫坐標(biāo)為3,過點作直線軸.
(1)點為拋物線上的動點,且在直線的下方,點,分別為軸,直線上的動點,且軸,當(dāng)面積最大時,求的最小值;
(2)過(1)中的點作,垂足為,且直線與軸交于點,把繞頂點旋轉(zhuǎn)45°,得到,再把沿直線平移至,在平面上是否存在點,使得以,,,為頂點的四邊形為菱形?若存在直接寫出點的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算題:二次根式與分式運算
(1)計算:( )﹣2+( ﹣ )0+(﹣1)1001+( ﹣3 )×tan30°
(2)先化簡,再求值: ﹣ ( ﹣a2+b2),其中a=3﹣2 ,b=3 ﹣3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為增強學(xué)生的愛國意識,某中學(xué)舉辦“愛我中華”朗誦比賽,全校學(xué)生都參加,并對表現(xiàn)優(yōu)異的學(xué)生進行表彰,設(shè)置一、二、三等獎和進步獎共四個獎項,賽后,校統(tǒng)計小組隨機抽取了九年級兩個班級,并將這兩個班的獲獎情況繪制成以下兩幅不完整的統(tǒng)計圖.
請根據(jù)圖中的信息,解答下列問題:
(1)求本次調(diào)查抽取的學(xué)生人數(shù),并補全條形統(tǒng)計圖;
(2)在扇形統(tǒng)計圖中,表示“三等獎”的扇形所對應(yīng)的圓心角度數(shù)是 72 °.
(3)若該校共有2600名學(xué)生,試估計得獎的學(xué)生人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com