【題目】某高校學(xué)生會(huì)向全校2900名學(xué)生發(fā)起了“愛心一日捐”捐款活動(dòng),為了解捐款情況,學(xué)生會(huì)隨機(jī)調(diào)查了部分學(xué)生的捐款金額,并用得到的數(shù)據(jù)繪制了如下統(tǒng)計(jì)圖①和圖②,請(qǐng)根據(jù)相關(guān)信息,解答下列問題:

(Ⅰ)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為 , 圖①中m的值是;
(Ⅱ)求本次你調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ)根據(jù)樣本數(shù)據(jù),估計(jì)該校本次活動(dòng)捐款金額為10元的學(xué)生人數(shù).

【答案】50;32;解:平均數(shù)是: =16(元),眾數(shù)是:10元,中位數(shù)是:15元;;該校本次活動(dòng)捐款金額為10元的學(xué)生人數(shù)是:2900×32%=928(人)
【解析】解:(Ⅰ)調(diào)查的學(xué)生數(shù)是:4÷8%=50(人),

m= ×100=32.

故答案是:50,32;

【考點(diǎn)精析】掌握算術(shù)平均數(shù)和中位數(shù)、眾數(shù)是解答本題的根本,需要知道總數(shù)量÷總份數(shù)=平均數(shù).解題關(guān)鍵是根據(jù)已知條件確定總數(shù)量以及與它相對(duì)應(yīng)的總份數(shù);中位數(shù)是唯一的,僅與數(shù)據(jù)的排列位置有關(guān),它不能充分利用所有數(shù)據(jù);眾數(shù)可能一個(gè),也可能多個(gè),它一定是這組數(shù)據(jù)中的數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AB是⊙O的直徑,C是圓周上的動(dòng)點(diǎn),P是優(yōu)弧中點(diǎn).
(1)求證:OP∥BC.
(2)連接PC交直徑AB于點(diǎn)D,當(dāng)OC=DC時(shí),求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,DBC邊上的一點(diǎn),EAD的中點(diǎn),過A點(diǎn)作BC的平行線交CE的延長線于點(diǎn)F,且AFBD,連接BF

1)求證:BDCD;

2)當(dāng)ABC滿足什么條件時(shí),四邊形AFBD是矩形?并說明理由;

3)在(2)的條件下,如果矩形AFBD是正方形,確定ABC的形狀并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y1與一次函數(shù)y2mx+n相交于A(﹣1,2),B4,a)兩點(diǎn),AEy軸于點(diǎn)E,則:

1)求反比例函數(shù)與一次函數(shù)的解析式;

2)若y1y2則直接寫出x的取值范圍;

3)若M為反比例函數(shù)上第四象限內(nèi)的一個(gè)動(dòng)點(diǎn),若滿足SABMSAOB,則求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,平分于點(diǎn) ,的中點(diǎn).

1)如圖,若的中點(diǎn),,,,求;

2)如圖,為線段上一點(diǎn),連接,滿足,.求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)興趣小組同學(xué)進(jìn)行測(cè)量大樹CD高度的綜合實(shí)踐活動(dòng),如圖,在點(diǎn)A處測(cè)得直立于地面的大樹頂端C的仰角為36°,然后沿在同一剖面的斜坡AB行走13米至坡頂B處,然后再沿水平方向行走6米至大樹腳底點(diǎn)D處,斜面AB的坡度(或坡比)i=1:2.4,那么大樹CD的高度約為(參考數(shù)據(jù):sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)( )

A.8.1米
B.17.2米
C.19.7米
D.25.5米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,為邊上一動(dòng)點(diǎn),,中點(diǎn),則的最小值為(

A.B.4C.5D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是位于陜西省西安市薦福寺內(nèi)的小雁塔,是中國早期方形密檐式磚塔的典型作品,并作為絲綢之路的一處重要遺址點(diǎn),被列入《世界遺產(chǎn)名錄》.小銘、小希等幾位同學(xué)想利用一些測(cè)量工具和所學(xué)的幾何知識(shí)測(cè)量小雁塔的高度,由于觀測(cè)點(diǎn)與小雁塔底部間的距離不易測(cè)量,因此經(jīng)過研究需要進(jìn)行兩次測(cè)量,于是在陽光下,他們首先利用影長進(jìn)行測(cè)量,方法如下:小銘在小雁塔的影子頂端D處豎直立一根木棒CD,并測(cè)得此時(shí)木棒的影長DE=2.4米;然后,小希在BD的延長線上找出一點(diǎn)F,使得A、C、F三點(diǎn)在同一直線上,并測(cè)得DF=2.5米.已知圖中所有點(diǎn)均在同一平面內(nèi),木棒高CD=1.72米,AB⊥BF,CD⊥BF,試根據(jù)以上測(cè)量數(shù)據(jù),求小雁塔的高度AB.

查看答案和解析>>

同步練習(xí)冊(cè)答案