【題目】某地2016年為做好“精準(zhǔn)扶貧”,投入資金1200萬元用于異地安置,并規(guī)劃投入異地安置資金的年平均增長率在三年內(nèi)保持不變,已知2018年在2016年的基礎(chǔ)上增加了投入異地安置資金1500萬元.
(1)2017年該地投入異地安置資金為多少元?
(2)在2017年異地安置的具體實(shí)施中,該地要求投入用于優(yōu)先搬遷租房獎(jiǎng)勵(lì)的資金不低于2017年該地投入異地安置資金的25%.規(guī)定前1000戶(含第1000)戶)每戶每天獎(jiǎng)勵(lì)8元,1000戶以后每戶每天獎(jiǎng)勵(lì)5元,按租房400天計(jì)算,求2017年該地至少有多少戶享受到優(yōu)先搬遷租房獎(jiǎng)勵(lì).
【答案】(1)2017年該地投入異地安置資金為18000000元;(2)2017年該地至少有1650戶享受到優(yōu)先搬遷租房獎(jiǎng)勵(lì).
【解析】
(1)設(shè)年平均增長率為x,根據(jù)2016年投入資金給×(1+增長率)2=2018年投入資金,列出方程,即可求得x的值,從而可以求得2017年該地投入異地安置資金的數(shù)額;
(2)設(shè)今年該地有y戶享受到優(yōu)先搬遷租房獎(jiǎng)勵(lì),根據(jù)前1000戶獲得的獎(jiǎng)勵(lì)總數(shù)+1000戶以后獲得的獎(jiǎng)勵(lì)總和不低于2017年該地投入異地安置資金的25%,可以列出相應(yīng)的不等式,從而可以解答本題.
解:(1)設(shè)該地投入異地安置資金的年平均增長率為,
根據(jù)題意得,
解得(舍),
∴(元),
則2017年該地投入異地安置資金為18000000元;
(2)設(shè)2017年該地有戶享受到優(yōu)先搬遷租房獎(jiǎng)勵(lì),
根據(jù)題意得,
解得,
∴2017年該地至少有1650戶享受到優(yōu)先搬遷租房獎(jiǎng)勵(lì),
則2017年該地至少有1650戶享受到優(yōu)先搬遷租房獎(jiǎng)勵(lì).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠設(shè)計(jì)了一款成本為20元/件的工藝品投放市場進(jìn)行試銷,經(jīng)過調(diào)查,得到如下數(shù)據(jù):
銷售單價(jià)x(元∕件) | … | 30 | 40 | 50 | 60 | … |
每天銷售量y(件) | … | 500 | 400 | 300 | 200 | … |
(1)研究發(fā)現(xiàn),每天銷售量y與單價(jià)x滿足一次函數(shù)關(guān)系,求出y與x的關(guān)系式;
(2)當(dāng)?shù)匚飪r(jià)部門規(guī)定,該工藝品銷售單價(jià)最高不能超過45元/件,那么銷售單價(jià)定為多少時(shí),工藝廠試銷該工藝品每天獲得的利潤8000元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】躍壯五金商店準(zhǔn)備從寧云機(jī)械廠購進(jìn)甲、乙兩種零件進(jìn)行銷售.若每個(gè)甲種零件的進(jìn)價(jià)比每個(gè)乙種零件的進(jìn)價(jià)少2元,且用80元購進(jìn)甲種零件的數(shù)量與用100元購進(jìn)乙種零件的數(shù)量相同.
(1)求每個(gè)甲種零件、每個(gè)乙種零件的進(jìn)價(jià)分別為多少元?
(2)若該五金商店本次購進(jìn)甲種零件的數(shù)量比購進(jìn)乙種零件的數(shù)量的3倍還少5個(gè),購進(jìn)兩種零件的總數(shù)量不超過95個(gè),該五金商店每個(gè)甲種零件的銷售價(jià)格為12元,每個(gè)乙種零件的銷售價(jià)格為15元,則將本次購進(jìn)的甲、乙兩種零件全部售出后,可使銷售兩種零件的總利潤(利潤=售價(jià)-進(jìn)價(jià))超過371元,通過計(jì)算求出躍壯五金商店本次從寧云機(jī)械廠購進(jìn)甲、乙兩種零件有幾種方案?請你設(shè)計(jì)出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P1(x1,y1),點(diǎn)P2(x2,y2),…,點(diǎn)Pn(xn,yn)在函數(shù)y=(x>0)的圖象上,△P1OA,△P2A1A2,△P3A2A3,…,△PnAn﹣1An都是等腰直角三角形,斜邊OA1,A1A2,A2A3,…,An﹣1An都在x軸上(n是大于或等于2的正整數(shù)).若△P1OA1的內(nèi)接正方形B1C1D1E1的周長記為l1,△P2A1A2的內(nèi)接正方形的周長記為l2,…,△PnAn﹣1An的內(nèi)接正方形BnCnDnEn的周長記為ln,則l1+l2+l3+…+ln= (用含n的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=kx+b交x軸于點(diǎn)A,交y軸于點(diǎn)B,直線y=2x﹣4交x軸于點(diǎn)D,與直線AB相交于點(diǎn)C(3,2).
(1)根據(jù)圖象,寫出關(guān)于x的不等式2x﹣4>kx+b的解集;
(2)若點(diǎn)A的坐標(biāo)為(5,0),求直線AB的解析式;
(3)在(2)的條件下,求四邊形BODC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線y=﹣x+b與坐標(biāo)軸交于C,D兩點(diǎn),直線AB與坐標(biāo)軸交于A,B兩點(diǎn),線段OA,OC的長是方程x2﹣3x+2=0的兩個(gè)根(OA>OC).
(1)求點(diǎn)A,C的坐標(biāo);
(2)直線AB與直線CD交于點(diǎn)E,若點(diǎn)E是線段AB的中點(diǎn),反比例函數(shù)y=(k≠0)的圖象的一個(gè)分支經(jīng)過點(diǎn)E,求k的值;
(3)在(2)的條件下,點(diǎn)M在直線CD上,坐標(biāo)平面內(nèi)是否存在點(diǎn)N,使以點(diǎn)B,E,M,N為頂點(diǎn)的四邊形是菱形?若存在,請直接寫出滿足條件的點(diǎn)N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某一項(xiàng)工程,在工程招標(biāo)時(shí),接到甲、乙兩個(gè)工程隊(duì)的投標(biāo)書,施工一天,需付甲工程隊(duì)工程款1.5萬元,乙工程隊(duì)工程款1.1萬元,工程領(lǐng)導(dǎo)小組根據(jù)甲乙兩隊(duì)的投標(biāo)書測算,可有三種施工方案:
(1)甲隊(duì)單獨(dú)完成這項(xiàng)工程剛好如期完成;
(2)乙隊(duì)單獨(dú)完成這項(xiàng)工程要比規(guī)定日期多用5天;
(3)若甲、乙兩隊(duì)合作4天,余下的工程由乙隊(duì)單獨(dú)也正好如期完成.
據(jù)上述條件解決下列問題:
①規(guī)定期限是多少天?寫出解答過程;
②在不耽誤工期的情況下,你覺得那一種施工方案最節(jié)省工程款?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,對角線AC,BD相交于O點(diǎn),點(diǎn)P是線段AD上一動(dòng)點(diǎn)(不與點(diǎn)D重合),PO的延長線交BC于Q點(diǎn).
(1)求證:四邊形PBQD為平行四邊形.
(2)若AB=3cm,AD=4cm,P從點(diǎn)A出發(fā).以1cm/s的速度向點(diǎn)D勻速運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為ts,問:四邊形PBQD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家體育用品商店出售同樣的乒乓球和乒乓拍,乒乓球拍每幅定價(jià)20元,乒乓球每盒定價(jià)5元,現(xiàn)兩家商店搞促銷活動(dòng).甲店:每買一副球拍送一盒乒乓球;乙店:按定價(jià)的8折優(yōu)惠.某班級需購球拍4副,乒乓球若干盒(不少于4盒).
(1)設(shè)購買乒乓球盒數(shù)為(盒),在甲店購買的付款數(shù)為(元);在乙店購買的付款數(shù)為(元),分別寫出和與的函數(shù)關(guān)系式,并寫出定義域.
(2)就乒乓球的盒數(shù)討論去哪家購買合算?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com