【題目】如圖,正方形ABCD的邊長為4,點(diǎn)E是AB的中點(diǎn),點(diǎn)P是邊BC上的動(dòng)點(diǎn),點(diǎn)Q是對角線AC上的動(dòng)點(diǎn)(包括端點(diǎn)A,C),則EP+PQ的最小值是 .
【答案】
【解析】如圖作點(diǎn)E關(guān)于BC的對稱點(diǎn)E′,作E′Q′⊥AC于Q′交BC于P.
∴PE=PE′,
∴PQ+PE=PE′+PQ,
當(dāng)Q用Q′重合時(shí),PE+PQ最。ù咕段最短),
∵四邊形ABCD是正方形,
∴∠E′AQ′=45°,
∵AE′=6,
∴E′Q′=3
∴PE+PQ的最小值為3 .
【考點(diǎn)精析】利用勾股定理的概念和正方形的性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若a,b,c是直角三角形的三條邊長,斜邊c上的高的長是h,給出下列結(jié)論:
①以a2 , b2 , c2的長為邊的三條線段能組成一個(gè)三角形;②以,,的長為邊的三條線段能組成一個(gè)三角形;③以a+b,c+h,h的長為邊的三條線段能組成直角三角形;④以,,的長為邊的三條線段能組成直角三角形,正確結(jié)論的序號為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外完全相同,其中紅球有個(gè),若從中隨機(jī)摸出一個(gè)球,這個(gè)球是白球的概率為.
()請直接寫出袋子中白球的個(gè)數(shù).
()隨機(jī)摸出一個(gè)球后,放回并攪勻,再隨機(jī)摸出一個(gè)球,求兩次都摸到相同顏色的小球的概率.(請結(jié)合樹狀圖或列表解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B兩點(diǎn)在數(shù)軸上表示的數(shù)分別為a,b,下列式子成立的是( )
A.ab>0
B.a+b<0
C.(b-1)(a+1)>0
D.(b-1)(a-1)>0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com