【題目】手機(jī)微信推出了搶紅包游戲,它有多種玩法,其中一種為“拼手氣紅包”,用戶設(shè)定好總金額以及紅包個(gè)數(shù)后,可以生成不等金額的紅包.現(xiàn)有一用戶發(fā)了三個(gè)“拼手氣紅包”,總金額為3元,隨機(jī)被甲、乙、丙三人搶到.
(1)判斷下列事件中,哪些是確定事件,哪些是不確定事件?
①丙搶到金額為1元的紅包;
②乙搶到金額為4元的紅包
③甲、乙兩人搶到的紅包金額之和一定比丙搶到的紅包金額多;
(2)記金額最多、居中、最少的紅包分別為A,B,C.
①求出甲搶到紅包A的概率;
②若甲沒搶到紅包A,則乙能搶到紅包A的概率又是多少?
【答案】(1)事件①,③是不確定事件,事件②是確定事件;(2)①;②.
【解析】
(1)直接利用確定事件“必然事件和不可能事件統(tǒng)稱為確定事件”以及不確定事件“概率論中把在一定條件下可能發(fā)生的事件叫可能事件,也稱不確定事件”的定義分析即可得出結(jié)論;(2)①直接利用概率公式得出結(jié)論;②因?yàn)橹皇O聝蓚(gè)紅包,故可得乙能搶到紅包A的概率.
解:(1)事件①,③是不確定事件,事件②是確定事件;
(2)①因?yàn)橛?/span>,,三個(gè)紅包,且搶到每一個(gè)紅包的可能性相同,
所以甲搶到紅包的概率;
②因?yàn)橹皇O聝蓚(gè)紅包,且搶到每一個(gè)紅包的可能性相同,
所以乙搶到紅包的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(2,0),等邊三角形AOC經(jīng)過平移或軸對(duì)稱或旋轉(zhuǎn)都可以得到△OBD.
(1)△AOC沿x軸向右平移得到△OBD,則平移的距離是___個(gè)單位長度;△AOC與△BOD關(guān)于直線對(duì)稱,則對(duì)稱軸是___;△AOC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)得到△DOB,則旋轉(zhuǎn)角度可以是___度;
(2)連結(jié)AD,交OC于點(diǎn)E,求∠AEO的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為體現(xiàn)社會(huì)對(duì)教師的尊重,教師節(jié)這天上午,出租車司機(jī)小王在東西走向的公路上免費(fèi)接送老師.如果規(guī)定向東為正,向西為負(fù),出租車的行程如下.(單位:千米)+15,﹣4,+13,﹣10,﹣12,+3,﹣13,﹣17
(1)當(dāng)最后一名老師到達(dá)目的地時(shí),小王距離開始接送第一位老師之前的地點(diǎn)的距離是多少?
(2)若出租車的耗油量為0.4升/千米,這天上午出租車共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某手機(jī)經(jīng)銷商計(jì)劃同時(shí)購進(jìn)一批甲、乙兩種型號(hào)的手機(jī),若購進(jìn)2部甲型號(hào)手機(jī)和1部乙型號(hào)手機(jī),共需要資金2800元;若購進(jìn)3部甲型號(hào)手機(jī)和2部乙型號(hào)手機(jī),共需要資金4600元
(1) 求甲、乙型號(hào)手機(jī)每部進(jìn)價(jià)為多少元?
(2) 該店計(jì)劃購進(jìn)甲、乙兩種型號(hào)的手機(jī)銷售,預(yù)計(jì)用不多于1.8萬元且不少于1.74萬元的資金購進(jìn)這兩部手機(jī)共20臺(tái),請(qǐng)問有幾種進(jìn)貨方案?請(qǐng)寫出進(jìn)貨方案
(3) 售出一部甲種型號(hào)手機(jī),利潤率為40%,乙型號(hào)手機(jī)的售價(jià)為1280元.為了促銷,公司決定每售出一臺(tái)乙型號(hào)手機(jī),返還顧客現(xiàn)金m元,而甲型號(hào)手機(jī)售價(jià)不變,要使(2)中所有方案獲利相同,求m的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠C=90°,AC=8,F(xiàn)是AB邊上的中點(diǎn),點(diǎn)D,E分別在AC、BC邊上運(yùn)動(dòng),且保持AD=CE,連接DE,DF,EF,在此運(yùn)動(dòng)過程中,下列結(jié)論:(1)△DFE是等腰直角三角形;(2)DE長度的最小值為4;(3)四邊形CDFE的面積保持不變;(4)△CDE面積的最大值是4.正確的結(jié)論是( 。
A. (1)(2)(3) B. (1)(3)(4) C. (1)(2)(4) D. (2)(3)(4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形中,,,,,是上一點(diǎn),是延長線上一點(diǎn),且.
(1)在圖1中,求證:.
(2)在圖1中,若點(diǎn)在上且,試猜想、、之間的數(shù)量關(guān)系并證明.
(3)運(yùn)用(1)(2)解答中所積累的經(jīng)驗(yàn)知識(shí),完成下題:如圖2,在四邊形中,,,在上,,且,若,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+x的對(duì)稱軸為直線x=2,頂點(diǎn)為A.點(diǎn)P為拋物線對(duì)稱軸上一點(diǎn),連結(jié)OA、OP.當(dāng)OA⊥OP時(shí),P點(diǎn)坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,然后解答后面的問題。
我們知道方程有無數(shù)組解,但在實(shí)際生活中我們往往只需要求出其正整數(shù)解。例:由,得,( 、為正整數(shù))
則有.又為正整數(shù),則為整數(shù).
由2與3互質(zhì),可知: 為3的倍數(shù),從而,代入.
的正整數(shù)解為
問題:(1)若為自然數(shù),則滿足條件的值有_____________個(gè)
(2)請(qǐng)你寫出方程的所有正整數(shù)解:_________________________
(3)若,請(qǐng)用含的式子表示,并求出它的所有整數(shù)解。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算題
(1)﹣6﹣8+5﹣(﹣2);
(2)(﹣49)﹣(+91)﹣(﹣5)+(﹣9);
(3);
(4)()×(﹣24);
(5)(﹣3.59)×()﹣2.41×()+6×();
(6)﹣23+|2﹣3|﹣2×(﹣1)2014.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com