【題目】手機(jī)上網(wǎng)已經(jīng)成為當(dāng)今年輕人時(shí)尚的網(wǎng)絡(luò)生活,某網(wǎng)絡(luò)公司看中了這種商機(jī),推出了兩種手機(jī)上網(wǎng)的計(jì)費(fèi)方式:方式A以每分鐘0.1元的價(jià)格按上網(wǎng)時(shí)間計(jì)費(fèi);方式B除收月基費(fèi)20元外,再以每分鐘0.06元的價(jià)格按上網(wǎng)時(shí)間計(jì)費(fèi).假設(shè)某客戶月手機(jī)上網(wǎng)的時(shí)間為x分鐘,上網(wǎng)費(fèi)用為y元.
(1)分別寫出該客戶按A、B兩種方式的上網(wǎng)費(fèi)y(元)與每月上網(wǎng)時(shí)間x(分鐘)的函數(shù)關(guān)系式,并在右圖的坐標(biāo)系中畫出這兩個(gè)函數(shù)的圖象;
(2)如何選擇計(jì)費(fèi)方式能使該客戶上網(wǎng)費(fèi)用更合算?

【答案】
(1)解:方式A:y=0.1x,

方式B:y=0.06x+20,

方式A,當(dāng)x=100時(shí),y=10,

所以y=0.1x經(jīng)過點(diǎn)坐標(biāo)原點(diǎn)與(100,10),

方式B,當(dāng)x=0時(shí),y=20,

當(dāng)x=500時(shí),y=0.06×500+20=50,

所以經(jīng)過點(diǎn)(0,20),(500,50),

作出圖象如圖;


(2)解:當(dāng)0.1x=0.06x+20時(shí),解得x=500,

所以,當(dāng)x<500時(shí),選擇方式A上網(wǎng)更合算,

當(dāng)x=500時(shí),選擇方式A與方式B上網(wǎng)一樣合算,

當(dāng)x>500時(shí),選擇方式B上網(wǎng)更合算.


【解析】(1)根據(jù)A種方式的上網(wǎng)費(fèi)等于單價(jià)乘以上網(wǎng)時(shí)間,B種方式的上網(wǎng)費(fèi)等于上網(wǎng)單價(jià)乘以上網(wǎng)時(shí)間再加上月基費(fèi)20元,然后列出函數(shù)關(guān)系式即可;再利用兩點(diǎn)法畫出函數(shù)圖象;(2)求出兩函數(shù)交點(diǎn)坐標(biāo),然后根據(jù)時(shí)間段,選擇下方的方式可以使上網(wǎng)費(fèi)用更合算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用兩張等寬的紙條交叉重疊地放在一起,重合的四邊形ABCD是一個(gè)特殊的四邊形.
(1)這個(gè)特殊的四邊形應(yīng)該叫做;
(2)請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,BAC=50°,BAC的平分線與AB的垂直平分線交于點(diǎn)O,將∠C沿EF(EBC上,FAC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,則∠CFE________度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖①,在AOBCOD中,OA=OB,OC=OD,AOB=COD=50°

(1)求證:①AC=BD;②APB=50°;

(2)如圖②,在AOBCOD中,OA=OB,OC=OD,AOB=COD=α,則AC與BD間的等量關(guān)系為 ,APB的大小為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解學(xué)生課外閱讀的情況,對(duì)學(xué)生“平均每天課外閱讀的時(shí)間”進(jìn)行了隨機(jī)抽樣調(diào)查,如圖是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,解答以下問題:
(1)平均每天課外閱讀的時(shí)間為“0.5~1小時(shí)”部分的扇形圖的圓心角為多少度;
(2)本次一共調(diào)查了多少名學(xué)生;
(3)將條形圖補(bǔ)充完整;
(4)若該校有1680名學(xué)生,請(qǐng)估計(jì)該校有多少名學(xué)生平均每天課外閱讀的時(shí)間在0.5小時(shí)以下.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著人們環(huán)保意識(shí)的不斷增強(qiáng),我市家庭電動(dòng)自行車的擁有量逐年增加.據(jù)統(tǒng)計(jì),某小區(qū)2009年底擁有家庭電動(dòng)自行車125輛,2011年底家庭電動(dòng)自行車的擁有量達(dá)到180輛.
(1)若該小區(qū)2009年底到2012年底家庭電動(dòng)自行車擁有量的年平均增長(zhǎng)率相同,則該小區(qū)到2012年底電動(dòng)自行車將達(dá)到多少輛?
(2)為了緩解停車矛盾,該小區(qū)決定投資3萬(wàn)元再建若干個(gè)停車位,據(jù)測(cè)算,建造費(fèi)用分別為室內(nèi)車位1000元/個(gè),露天車位200元/個(gè).考慮到實(shí)際因素,計(jì)劃露天車位的數(shù)量不少于室內(nèi)車位的2倍,但不超過室內(nèi)車位的2.5倍,則該小區(qū)最多可建兩種車位各多少個(gè)?試寫出所有可能的方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中華人民共和國(guó)道路交通管理?xiàng)l例規(guī)定:小汽車在城市街道上行駛速度不得超過70 km/h.如圖,一輛小汽車在一條城市街路上直道行駛,某一時(shí)刻剛好行駛到路對(duì)面車速檢測(cè)儀正前方30 m,過了2 s,測(cè)得小汽車與車速檢測(cè)儀間距離為50 m,這輛小汽車超速了嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,AB=AC=6,D為BC的中點(diǎn).
(1)若E、F分別是AB、AC上的點(diǎn),且AE=CF,求證:△AED≌△CFD;
(2)當(dāng)點(diǎn)F、E分別從C、A兩點(diǎn)同時(shí)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿CA、AB運(yùn)動(dòng),到點(diǎn)A、B時(shí)停止;設(shè)△DEF的面積為y,F(xiàn)點(diǎn)運(yùn)動(dòng)的時(shí)間為x,求y與x的函數(shù)關(guān)系式;
(3)在(2)的條件下,點(diǎn)F、E分別沿CA、AB的延長(zhǎng)線繼續(xù)運(yùn)動(dòng),求此時(shí)y與x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠XOY=90°,等邊三角形PAB的頂點(diǎn)P與O點(diǎn)重合,頂點(diǎn)A是射線OX上的一個(gè)定點(diǎn),另一個(gè)頂點(diǎn)B在∠XOY的內(nèi)部.
(1)當(dāng)頂點(diǎn)P在射線OY上移動(dòng)到點(diǎn)P1時(shí),連接AP1 , 請(qǐng)用尺規(guī)作圖;在∠XOY內(nèi)部作出以AP1為邊的等邊△AP1B1(要求保留作圖痕跡,不要求寫作法和證明);
(2)設(shè)AP1交OB于點(diǎn)C,AB的延長(zhǎng)線交B1P1于點(diǎn)D.求證:△ABC∽△AP1D;
(3)連接BB1 , 求證:∠ABB1=90°.

查看答案和解析>>

同步練習(xí)冊(cè)答案