【題目】下圖取材于我國古代數(shù)學家趙爽的《勾股圓方圖》,由四個全等的直角三角形與中間的小正方形拼成的一個大正方形如果大正方形的面積是13,小正方形的面積是4,直角三角形的較短直角邊為a,較長直角邊為b,那么的值為______________.

【答案】22

【解析】

根據(jù)大正方形的面積即可求得c2,利用勾股定理可以得到a2+b2=c2,然后求得直角三角形的面積即可求得ab的值,根據(jù)(a+b2=a2+b2+2ab=c2+2ab即可求解.

解:∵大正方形的面積是13,
c2=13,
a2+b2=c2=13
∵直角三角形的面積是,

又∵直角三角形的面積是=2.25

ab=4.5,

∴(a+b2=a2+b2+2ab=c2+2ab=13+2×4.5=13+9=22
故答案是:22

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某報社為了解市民對“社會主義核心價值觀”的知曉程度,采取隨機抽樣的方式進行問卷調(diào)查,調(diào)查結(jié)果分為“A.非常了解”、“B.了解”、“C.基本了解”三個等級,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.

(1)這次調(diào)查的市民人數(shù)為________人,m=________,n=________;

(2)補全條形統(tǒng)計圖;

(3)若該市約有市民100000人,請你根據(jù)抽樣調(diào)查的結(jié)果,估計該市大約有多少人對“社會主義核心價值觀”達到“A.非常了解”的程度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O是坐標原點,點A的坐標是(﹣2,4),過點AAB⊥y軸,垂足為B,連結(jié)OA.

(1)求△OAB的面積;

(2)若拋物線y=﹣x2﹣2x+c經(jīng)過點A,求c的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把四張形狀大小完全相同的小長方形卡片(如圖①)不重疊的放在一個長為 ,寬為的長方形內(nèi),該長方形內(nèi)部未被卡片覆蓋的部分用陰影表示.

1)能否用只含的式子表示出圖②中兩塊陰影部分的周長和?_____(填不能);(2)若能,請你用只含的式子表示出中兩塊陰影部分的周長和;若不能,請說明理由_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)8+(-)-5-(-0.25); (2)|-|÷()×(-4)2

(3)()×(-30); (4)(-1)3-(13×[2-(-3)2].

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,∠C=90°,以BC為直徑的⊙OABEODBC交⊙OD,DEBCF,點PCB延長線上的一點,PE延長交ACGPE=PF,下列4個結(jié)論:①GE=GCAG=GE;OGBE④∠A=P.其中正確的結(jié)論是_____(填寫所有正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知數(shù)軸上點A表示的數(shù)為8,B是數(shù)軸上位于點A左側(cè)一點,且AB=20,

(1)寫出數(shù)軸上點B表示的數(shù)   ;

(2)|5﹣3|表示53之差的絕對值,實際上也可理解為53兩數(shù)在數(shù)軸上所對的兩點之間的距離.如|x﹣3|的幾何意義是數(shù)軸上表示有理數(shù)x的點與表示有理數(shù)3的點之間的距離.試探索:

①:若|x﹣8|=2,則x=   

:|x+12|+|x﹣8|的最小值為   

(3)動點PO點出發(fā),以每秒5個單位長度的速度沿數(shù)軸向右勻速運動,設(shè)運動時間為t(t>0)秒.求當t為多少秒時?A,P兩點之間的距離為2;

(4)動點P,Q分別從O,B兩點,同時出發(fā),點P以每秒5個單位長度沿數(shù)軸向右勻速運動,Q點以P點速度的兩倍,沿數(shù)軸向右勻速運動,設(shè)運動時間為t(t>0)秒.問當t為多少秒時?P,Q之間的距離為4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在黃州服裝批發(fā)市場,某種品牌的時裝當季節(jié)將來臨時,價格呈上升趨勢,設(shè)這種時裝開始時定價為20元,并且每周(7天)漲價2元,從第6周開始保持30元的價格平穩(wěn)銷售;從第12周開始,當季節(jié)即將過去時,平均每周減價2元,直到第16周周末,該服裝不再銷售.

(1)試建立銷售價y與周次x之間的函數(shù)關(guān)系式;

(2)若這種時裝每件進價Z與周次x次之間的關(guān)系為Z=﹣0.125(x﹣8)2+12,1≤x≤16,且x為整數(shù),試問該服裝第幾周出售時,每件銷售利潤最大?最大利潤為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著我國經(jīng)濟的高速發(fā)展,有著經(jīng)濟晴雨表之稱的股市也得到迅速的發(fā)展,下表是今年上證指數(shù)某一周星期一至星期五的變化情況.(注:上周五收盤時上證指數(shù)為2019點,每一天收盤時指數(shù)與前一天相比,漲記為,跌記為

星期

指數(shù)的變化(與前一天比較)

1)本周星期二收盤時的上證指數(shù)是 點;

2)本周星期五收盤時的上證指數(shù)與上周星期五收盤時的上證指數(shù)相比,是增加了還是減少了?

3)本周哪一天收盤時的上證指數(shù)最高?哪一天收盤時的上證指數(shù)最低?

查看答案和解析>>

同步練習冊答案