【題目】在黃州服裝批發(fā)市場(chǎng),某種品牌的時(shí)裝當(dāng)季節(jié)將來(lái)臨時(shí),價(jià)格呈上升趨勢(shì),設(shè)這種時(shí)裝開(kāi)始時(shí)定價(jià)為20元,并且每周(7天)漲價(jià)2元,從第6周開(kāi)始保持30元的價(jià)格平穩(wěn)銷(xiāo)售;從第12周開(kāi)始,當(dāng)季節(jié)即將過(guò)去時(shí),平均每周減價(jià)2元,直到第16周周末,該服裝不再銷(xiāo)售.
(1)試建立銷(xiāo)售價(jià)y與周次x之間的函數(shù)關(guān)系式;
(2)若這種時(shí)裝每件進(jìn)價(jià)Z與周次x次之間的關(guān)系為Z=﹣0.125(x﹣8)2+12,1≤x≤16,且x為整數(shù),試問(wèn)該服裝第幾周出售時(shí),每件銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)為多少?
【答案】(1)y=;(2)第11周出售時(shí),每件銷(xiāo)售利潤(rùn)最大,最大利潤(rùn)為19元.
【解析】試題分析:由于y與x之間的函數(shù)關(guān)系式為分段函數(shù),則W與x之間的函數(shù)關(guān)系式亦為分段函數(shù).分情況解答即可.
試題解析:解:(1)依題意得,可建立的函數(shù)關(guān)系式為:
;
即y= ;
(2)設(shè)利潤(rùn)為W,則W=售價(jià)﹣進(jìn)價(jià)
故W,
化簡(jiǎn)得W=
①當(dāng)W=時(shí).∵當(dāng)x≥0,函數(shù)W隨著x增大而增大.∵1≤x<6,∴當(dāng)x=5時(shí),W有最大值,最大值=.
②當(dāng)W=時(shí).∵W=,當(dāng)x≥8時(shí),函數(shù)W隨x增大而增大,
∴在x=11時(shí),函數(shù)有最大值為;
③當(dāng)W=時(shí).∵W=,
∵12≤x≤16,當(dāng)x≤16時(shí),函數(shù)W隨x增大而減小,
∴在x=12時(shí),函數(shù)有最大值為18.
綜上所述:當(dāng)x=11時(shí),函數(shù)有最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某檢修小組從地出發(fā),在東西向的馬路上檢修線(xiàn)路,如果規(guī)定向東行駛為正,向西行駛為負(fù),一天中七次行駛紀(jì)錄如下.(單位:)
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 |
求收工時(shí),檢修小組在地的哪個(gè)方向?距離地多遠(yuǎn)?
在第幾次紀(jì)錄時(shí)距地最遠(yuǎn)?
若汽車(chē)行駛每千米耗油升,問(wèn)從地出發(fā),檢修結(jié)束后再回到地共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖取材于我國(guó)古代數(shù)學(xué)家趙爽的《勾股圓方圖》,由四個(gè)全等的直角三角形與中間的小正方形拼成的一個(gè)大正方形如果大正方形的面積是13,小正方形的面積是4,直角三角形的較短直角邊為a,較長(zhǎng)直角邊為b,那么的值為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為8的正方形ABCD中,點(diǎn)O為AD上一動(dòng)點(diǎn)(4<OA<8),以O為圓心,OA的長(zhǎng)為半徑的圓交邊CD于點(diǎn)E,連接OE、AE,過(guò)點(diǎn)E作⊙O的切線(xiàn)交邊BC于F.
(1)求證:△ODE∽△ECF;
(2)在點(diǎn)O的運(yùn)動(dòng)過(guò)程中,設(shè)DE= :
①求的最大值,并求此時(shí)⊙O的半徑長(zhǎng);
②判斷△CEF的周長(zhǎng)是否為定值,若是,求出△CEF的周長(zhǎng);否則,請(qǐng)說(shuō)明理由?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】三角形角平分線(xiàn)交點(diǎn)或三角形內(nèi)切圓的圓心都稱(chēng)為三角形的內(nèi)心.按此說(shuō)法,四邊形的四個(gè)角平分線(xiàn)交于一點(diǎn),我們也稱(chēng)為“四邊形的內(nèi)心”.
(1)試舉出一個(gè)有內(nèi)心的四邊形.
(2)探究:對(duì)于任意四邊形ABCD,如果有內(nèi)心,則四邊形的邊長(zhǎng)具備何種條件?為什么?
(3)探究:腰長(zhǎng)為的等腰直角三角形ABC,∠C=90°,O是△ABC的內(nèi)心,若沿圖中虛線(xiàn)剪開(kāi),O仍然是四邊形ABDE的內(nèi)心,此時(shí)裁剪線(xiàn)有多少條?
(4)問(wèn)題(3)中,O是四邊形ABDE內(nèi)心,且四邊形ABDE是等腰梯形,求DE的長(zhǎng)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某一城市美化工程招標(biāo)時(shí),有甲、乙兩個(gè)工程隊(duì)投標(biāo).經(jīng)測(cè)算:甲隊(duì)單獨(dú)完成這項(xiàng)工程需要60天,乙隊(duì)單獨(dú)完成這項(xiàng)工程需要90天;若由甲隊(duì)先做20天,剩下的工程由甲、乙兩隊(duì)合做完成.
(1)甲、乙兩隊(duì)合作多少天?
(2)甲隊(duì)施工一天需付工程款3.5萬(wàn)元,乙隊(duì)施工一天需付工程款2萬(wàn)元.若該工程計(jì)劃在70天內(nèi)完成,在不超過(guò)計(jì)劃天數(shù)的前提下,是由甲隊(duì)或乙隊(duì)單獨(dú)完成該工程省錢(qián)?還是由甲乙兩隊(duì)全程合作完成該工程省錢(qián)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△AOB是直角三角形,∠AOB=90°,邊AB與y軸交于點(diǎn)C.
(1)若∠A=∠AOC,試說(shuō)明:∠B=∠BOC;
(2)延長(zhǎng)AB交x軸于點(diǎn)E,過(guò)O作OD⊥AB,若∠DOB=∠EOB,∠A=∠E,求∠A的度數(shù);
(3)如圖,OF平分∠AOM,∠BCO的平分線(xiàn)交FO的延長(zhǎng)線(xiàn)于點(diǎn)P,∠A=40°,當(dāng)△ABO繞O點(diǎn)旋轉(zhuǎn)時(shí)(邊AB與y軸正半軸始終相交于點(diǎn)C),問(wèn)∠P的度數(shù)是否發(fā)生改變?若不變,求其度數(shù);若改變,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD是中線(xiàn),E是AD的中點(diǎn),過(guò)點(diǎn)A作AF∥BC交BE的延長(zhǎng)線(xiàn)于F,連接CF.
(1)求證:AD=AF;
(2)如果AB=AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一條公路修到湖邊時(shí),需拐彎繞湖而過(guò),如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,這時(shí)的道路恰好和第一次拐彎之前的道路平行,則∠C的大小是( )
A. 150° B. 130° C. 140° D. 120°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com