【題目】某校八年級共有300位學(xué)生.為了解該年級學(xué)生地理、生物兩門課程的學(xué)習(xí)情況,從中隨機(jī)抽取60位學(xué)生進(jìn)行測試,獲得了他們的成績(百分制),并對數(shù)據(jù)(成績)進(jìn)行整理和分析,下面給出了部分信息.
信息1:如圖是地理課程成績的條形統(tǒng)計圖 (數(shù)據(jù)分成6組:第一組40≤<50;第二組50≤<60;第三組60≤<70;第四組70≤<80;第五組80≤<90;第六組90≤≤100):
信息2:地理課程測試在第四組70≤<80的成績是:
70 71 71 71 73 73 75 75 76.5 76.5 78 78 79 79.5
信息3:地理、生物兩門課程成績的平均數(shù)、中位數(shù)、眾數(shù)如下表:
課程 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
地理 | 73.8 | 83.5 | |
生物 | 72.2 | 70 | 82 |
根據(jù)以上信息,回答下列問題:
(1)所抽取的60位學(xué)生地理課程成績的中位數(shù)落在第幾組?寫出這60位學(xué)生地理課程測試成績的中位數(shù);
(2)在此次測試中,某學(xué)生的地理課程成績?yōu)?/span>75分,生物課程成績?yōu)?/span>71分,該生成績排名更靠前的課程是地理還是生物?說明理由;
(3)假設(shè)該年級學(xué)生都參加此次測試,估計地理課程成績超過73.8分的人數(shù).
【答案】(1)第四組,m=77.25.(2)該生成績排名更靠前的課程是生物.(3)170人.
【解析】
(1)根據(jù)中位數(shù)的定義即可判斷.
(2)根據(jù)中位數(shù)的意義即可判斷.
(3)利用樣本估計總體的思想解決問題即可.
(1)所抽取的60位學(xué)生地理課程成績的中位數(shù)落在第四組,這60位學(xué)生地理課程測試成績的中位數(shù)m==77.25.
(2)地理課程成績?yōu)?/span>75分<中位數(shù)77.25分,生物課程成績?yōu)?/span>71分>70分,
∴該生成績排名更靠前的課程是生物.
(3)300×=170(人),
∴估計地理課程成績超過73.8分的人數(shù)有170人.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸相交于A(﹣3,0)、B(1,0)兩點(diǎn),與y軸相交于點(diǎn)C(0,3),點(diǎn)C、D是二次函數(shù)圖象上的一對對稱點(diǎn),一次函數(shù)的圖象過點(diǎn)B、D.
(1)求D點(diǎn)坐標(biāo);
(2)求二次函數(shù)的解析式;
(3)根據(jù)圖象直接寫出使一次函數(shù)值小于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班在元旦游戲活動中,有一個摸獎游戲,規(guī)則如下:不透明的盒子內(nèi)有4個除顏色外完全相同的球,其中有2個紅球,2個白球,搖勻后讓同學(xué)們?nèi)ズ凶觾?nèi)摸球,摸到紅球的就獲獎,摸到白球的不獲獎.
(1)現(xiàn)小穎有一次摸球機(jī)會,她從盒子中隨機(jī)摸出1個球,求小穎獲獎的概率;
(2)如果小穎、小明都有兩次摸球的機(jī)會,小穎先摸出1個球,放回后再摸出1個球;小明同時摸出2個球;他們摸出的2個球中只要有紅球就獲獎,他們獲獎的機(jī)會相等嗎?請用樹狀圖(或列表)的方法說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為中的一條射線,點(diǎn)在邊上,于,交于點(diǎn),交于點(diǎn),于點(diǎn),交于點(diǎn),連接交于點(diǎn).
求證:四邊形為矩形;
若,試探究與的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,和分別平分和的外角,一動點(diǎn)在上運(yùn)動,過點(diǎn)作的平行線與和的角平分線分別交于點(diǎn)和點(diǎn).
求證:當(dāng)點(diǎn)運(yùn)動到什么位置時,四邊形為矩形,說明理由;
在第題的基礎(chǔ)上,當(dāng)滿足什么條件時,四邊形為正方形,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1).如圖①,已知AB∥CD,求證:∠A+∠C=∠E
(2)直接寫出當(dāng)點(diǎn)E的位置分別如圖②、圖③、圖④的情形時∠A、∠C、∠AEC之間的關(guān)系.
②中∠C、∠A、∠AEC之間的關(guān)系為 ;
③中∠C、∠A、∠AEC之間的關(guān)系為 ;
④中∠C、∠A、∠AEC之間的關(guān)系為 ;
(3)在(2)中的3中情形中任選一種進(jìn)行證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=,BC=8.
(1)動手操作:
利用尺規(guī)作以AC為直徑的圓O,并標(biāo)圓O與AB的交點(diǎn)D,與BC的交點(diǎn)E,連接DE、CE(保留作圖痕跡,不寫作法)
(2)綜合應(yīng)用:
在你所作的圖中,①求證:DE=CE;②求DC的長
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com