【題目】日前一名男子報(bào)警稱,在菲律賓南部發(fā)現(xiàn)印有馬來西亞國旗的飛機(jī)殘骸,懷疑是失聯(lián)的馬航MH370客機(jī),馬來西亞警方立即派出直升機(jī)前去查證.飛機(jī)在空中A點(diǎn)看見殘骸C的俯角為20°,繼續(xù)沿直線AE飛行16秒到達(dá)B點(diǎn),看見殘骸C的俯角為45°,已知飛機(jī)的飛行度為3150米/分.

(參考數(shù)據(jù):tan20°≈0.3,cos20°≈0.9,sin20°≈0.2)
(1)求殘骸到直升機(jī)航線的垂直距離CD為多少米?
(2)在B點(diǎn)時(shí),機(jī)組人員接到總指揮部電話,8分鐘后該海域?qū)⒂瓉肀容^大的風(fēng)浪,為了能及時(shí)觀察取證,機(jī)組人員決定飛行到D點(diǎn)立即空投設(shè)備,將殘骸抓回機(jī)艙(忽略風(fēng)速對設(shè)備的影響),己知設(shè)備在空中的降落與上升速度均為700米/分.設(shè)備抓取殘骸本身需要6分鐘,請問能否在風(fēng)浪來臨前將殘骸抓回機(jī)艙?請說明理由.

【答案】
(1)解:設(shè)CD=x米,

∵∠DBC=45°,

∴BD=x米,

由題意得,AB=3150× =840米,

tanA= ,即 =0.3,

解得,x=360米

∴殘骸到直升機(jī)航線的垂直距離CD為360米


(2)解:直升飛機(jī)從B到D需要的時(shí)間: ≈0.11分,

直升飛機(jī)從D到C和返回需要的時(shí)間: ≈1分,

0.11+1+6=7.11<8,

∴能在風(fēng)浪來臨前將殘骸抓回機(jī)艙


【解析】(1)設(shè)CD=x米,根據(jù)題意得到BD=x米,根據(jù)正切的概念列式計(jì)算即可;(2)計(jì)算出直升飛機(jī)往返需要的時(shí)間與8分鐘進(jìn)行比較即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一家商店將某種服裝按成本價(jià)每件a元提高50%標(biāo)價(jià),又以8折優(yōu)惠賣出,則這種服裝每件的售價(jià)是(
A.0.8a元
B.0.4a元
C.1.2a元
D.1.5a元

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從﹣4、- 、0、 、4這五個(gè)數(shù)中,任取一個(gè)數(shù)作為a的值,恰好使得關(guān)于x的一元二次方程2ax2﹣6x﹣1=0有兩個(gè)不相等的實(shí)數(shù)根,且使兩個(gè)根都在﹣1和1之間(包括﹣1和1),則取到滿足條件的a值的概率為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方便交通,綠色出行,人們常選擇以共享單車作為代步工具、圖(1)所示的是一輛自行車的實(shí)物圖.圖(2)是這輛自行車的部分幾何示意圖,其中車架檔ACCD的長分別為45cm60cm,且它們互相垂直,座桿CE的長為20cm.點(diǎn)A、C、E在同一條直線上,且∠CAB=75°

(參考數(shù)據(jù):sin75°=0.966cos75°=0.259,tan75°=3.732

圖(1 圖(2

1)求車架檔AD的長;

2)求車座點(diǎn)E到車架檔AB的距離(結(jié)果精確到1cm).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若a<b,則ac>bc成立,那么c應(yīng)該滿足的條件是( )

A. c>0 B. c<0 C. c≥0 D. c≤0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EAD邊的中點(diǎn),BEAC,垂足為點(diǎn)F,連接DF

(1)求證:CF=2AF;

(2)求tan∠CFD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠A,B,C的對邊分別記為a,b,c,由下列條件不能判定△ABC為直角三角形的是( 。

A. A+∠B=C B. A:B:C=1:2:3

C. a2=c2﹣b2 D. a:b:c=3:4:6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正比例函數(shù)y=kx的圖象經(jīng)過點(diǎn)(1,﹣1),則k的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線AC與BD相交于點(diǎn)O,過點(diǎn)A作AE∥BD,過點(diǎn)D作ED∥AC,兩線相交于點(diǎn)E.

(1)求證:四邊形AODE是菱形;
(2)連接BE,交AC于點(diǎn)F.若BE⊥ED于點(diǎn)E,求∠AOD的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案